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1 Introduction 

Active fund management industry (AFMI) investors seek excess returns over passive 

indices allocating, based on preference, wealth to AFMI managers, who incur costs and charge 

fees. [e.g., Berk and Green (2004), Berk (2005)]. This implies that in AFMI it is the buyers 

(investors) who determine the quantity of production (i.e., investments). The producers (fund 

managers), with fixed prices (management fees), stimulate the quantity of production by 

offering higher returns to improve profits. These features make AFMI different from classical 

production industries, in which the producers determine the product price and quantity of 

production, and the buyers decide the amount to buy. As AFMI manages a huge amount of 

wealth,1  the study of AFMI structure, in particular AFMI concentration, and its dynamics, 

offers special economic insights. 

Current literature has shown that AFMI concentration has impact on AFMI size and 

performance [Feldman, Saxena, and Xu (2020, 2021)]. This implies that the dynamics of AFMI 

concentration exerts significant effect on AFMI over time. However, there is little study on the 

dynamics of AFMI concentration, and the goal of this paper is to fill the gap. 

We develop a continuous-time framework to model multiple heterogeneous active 

funds and a passive benchmark portfolio. In our model, fund managers’ abilities to create 

abnormal returns are dynamic and unobservable to both investors and managers. Both learn 

these abilities by observing fund returns.2 Managers set constant management fees and, over 

time, choose the size of wealth they actively manage to determine fund net alpha3  while 

maximizing fund profits. Risk-neutral investors supply capital with infinite elasticity to funds 

that have positive excess expected returns compared to the benchmark return. There are 

decreasing returns to scale in AFMI such that funds’ total costs are increasing and convex in 

 
1 According to the Investment Company Institute (ICI), the total net assets of worldwide regulated open-end funds 
(including mutual funds, exchange-traded funds, and institutional funds), were $63.1 trillion in 2020. See the 2021 
Investment Company Fact Book at ICI website, https://www.ici.org/system/files/2021-05/2021_factbook.pdf, 
accessed on October 12th, 2021. 
2 The active funds’ observable gross alphas follow Itô processes, in which the drift terms depend on the dynamic 
unobservable manager ability levels. These ability levels also follow Itô processes. Their diffusions are (locally, 
imperfectly) correlated with those of funds’ gross alpha processes. 
3 Berk and Green (2004) shows that the case in which the fund manager actively manages the whole fund and 
chooses his/her management fee at each time is equivalent to the case in which the fund manager chooses the 
amount of the fund to actively manage at each time under a fixed management fee. As the latter case is more 
realistic, we focus on it to conduct our analyses. 



3 
 

the size of assets under active management. All these settings are similar to those in the current 

models [e.g., Berk and Green (2004), Dangl, Wu, and Zechner (2008), Brown and Wu (2013, 

2016), and Feldman and Xu (2021)]. 

In the unique Nash equilibrium in which each market participant makes an optimal 

decision, a fund’s size is increasing and convex in the expectation of its manager’s ability to 

create abnormal returns (hereafter, inferred ability). Also, a fund’s profit is unaffected by the 

fixed fee but is increasing and convex with its manager’s inferred ability.4 This implies that in 

equilibrium, better managers manage larger funds and receive larger rewards. Further, many 

common measures of the AFMI’s industrial organization are less informative. For example, as 

fund costs are transferred to investors as deductions in fund returns, a fund’s profit margin (the 

difference of revenue and costs, divided by the revenue) and Lerner Index (the difference of 

fee and marginal cost, divided by fee) are equal to one, and profit on each dollar under 

management is the fixed percentage management fee. As profit margin and Lerner Index are 

indicators of funds’ profitability and market power, respectively, the above results imply that 

there are no dynamics in funds’ profitability or market power. This makes AFMI’s 

concentration dynamics more relevant in studying the AFMI’s industrial organization dynamics. 

We use the Herfindahl-Hirschman index (HHI) to measure AFMI concentration, which 

is the sum of funds’ market shares squared,5 for several reasons. First, the HHI reflects the 

combined influence of both unequal fund sizes and the concentration of activity in a few large 

funds, so it has advantage over other concentration measures, such as a concentration ratio, 

which only sums up the market shares of a few largest funds and ignores the information of 

other funds. Second, some regulatory agencies use the HHI to measure concentration.6 Third, 

 
4 The intuition is that, with a fixed fee, to maximize fund profit, a fund manager tries to attract as much investment 
as possible by offering positive expected net alpha to investors. Under decreasing returns to scale, the manager’s 
inferred ability determines the expected net alphas that he/she can produce and then determines the equilibrium 
fund size. A manager with higher inferred ability puts a larger amount of the fund under active management to 
offer higher expected net alpha, and investors respond to this higher inferred ability more intensively when 
investing in this fund. 
5 A higher (lower) HHI implies a more (less) concentrated AFMI. The highest value of HHI is one, which implies 
a monopolistic AFMI. The lowest value of HHI is the inverse of the number of funds, which implies identical 
funds in the AFMI. 
6 For example, the U.S. Census calculates industry concentration as HHI, used by regulatory agencies such as the 
Federal Trade Commission and Department of Justice [e.g., Ali, Klasa, and Yeung (2009) and Azar, Schmalz, and 
Tecu (2018)]. 
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the HHI is a common measure of concentration in current theoretical and empirical studies.7 

Fourth, new concentration measures are calculated based on the HHI. For example, the 

normalized Herfindahl-Hirschman index adjusts the effects of the number of rivals,8 and the 

modified Herfindahl-Hirschman index captures the concentrations of producers and of 

shareholders’ ownership.9 

As managers’ inferred abilities determine equilibrium fund sizes, fund market shares 

depend on managers’ inferred abilities relative to those of other managers. Then, the 

heterogeneity in managers’ inferred abilities, or the relative inferred abilities, determines the 

equilibrium AFMI HHI (hereafter HHI). Consequently, the dynamics of the HHI depends on 

the change in managers’ relative inferred abilities. We find that if a fund’s inferred ability is 

sufficiently large (small) relative to other funds, then an increase in the manager’s inferred 

ability, holding other managers’ inferred abilities unchanged, has a positive (negative) impact 

on the change in the HHI. This positive (negative) impact is stronger if this manager’s inferred 

ability, fund size factor, which is the inverse of the product of management fee and the 

decreasing returns to scale coefficient, and/or sensitivity of gross alpha to ability are larger. 

The intuition is that if a manager’s inferred ability is sufficiently large, then the fund’s 

equilibrium size is sufficiently large such that the fund dominates in the market. A higher 

inferred ability attracts more investment to this fund, making it larger and the AFMI more 

concentrated at this fund. Further, the manager’s higher inferred ability, a higher fund size 

factor, and a higher sensitivity of gross alpha to ability all induce a larger fund size, making 

this fund even larger and the AFMI more concentrated. On the other hand, if this manager’s 

inferred ability is sufficiently small, then the fund’s equilibrium size is sufficiently small 

relative to other funds’ sizes. A higher inferred ability attracts more investment to this fund, 

making its size closer to other funds and making the AFMI less concentrated. Also, if this 

inferred ability, fund size factor, and/or sensitivity of gross alpha to ability are larger, then the 

 
7 See, for example, theoretical models, such as Bustamante and Donangelo (2017) and Corhay, Kung, and Schmid 
(2020), that study firm concentration; and Feldman, Saxena, and Xu (2020, 2021) that study AFMI concentration; 
and empirical models, such as Cornaggia, Mao, Tian, and Wolfe (2015) that study labor concentration and industry 
concentration; Spiegel and Tookes (2013) and Gu (2016) that study product market concentration;and Giannetti 
and Saidi (2019) that study credit concentration. 
8 See, for example, Cremers, Nair, and Peyer (2008). 
9  See, for example, O’Brien and Salop (2000), Azar, Schmalz, and Tecu (2018), and Koch, Panayides, and 
Thomas (2021). 
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fund’s size becomes larger and closer to other funds, making the AFMI less concentrated. 

Regarding second-order effects, the HHI is concave in a manager’s inferred ability, if 

this manager’s inferred ability is sufficiently large or sufficiently small relative to that of other 

managers. Then, over the next infinitesimal period, this concavity has a negative impact on the 

change in the HHI. The HHI is convex in this manager’s inferred ability if all managers’ 

inferred abilities are sufficiently close. Then, over the next infinitesimal period, this convexity 

has a positive impact on the change in the HHI. If the HHI is concave (convex) in this 

manager’s inferred ability, then both a higher fund size factor and a higher sensitivity of gross 

alpha to ability make the effect of this concavity (convexity) on the change in the HHI stronger. 

The intuition is that if a manager’s inferred ability is sufficiently large (small), then this 

fund’s market share is sufficiently large (small), making the AFMI concentrated at this fund (at 

other funds). Although the higher (lower) the manager’s inferred ability makes the AFMI more 

concentrated at this fund (at other funds), it becomes more and more difficult to increase the 

HHI in this way. On the other hand, if all managers’ inferred abilities are sufficiently close, 

then their fund sizes are sufficiently close. In that case, both a larger and a smaller inferred 

ability of a manager can make this fund’s size deviate from other funds’ sizes, making the 

AFMI more concentrated. It is easier to make this fund’s size deviate from other funds’ sizes 

and to increase the HHI if the absolute change in this manager’s inferred ability is larger. 

Further, both a higher fund size factor and a higher sensitivity of gross alpha to ability make 

this fund’s equilibrium size larger, thus more relevant, in the AFMI. So, if the HHI is concave 

(convex) in a manager’s inferred ability, this fund’s larger size intensifies the effect of this 

concavity (convexity) on the change in the HHI. 

Moreover, in a special case in which managers’ unobservable abilities are constant, over 

time the estimation precision of inferred abilities monotonically improves, and the sensitivities 

of inferred abilities to innovation shocks decrease monotonically. As time goes to infinity, 

AFMI reaches a steady state in which investors know managers’ abilities and managers’ 

inferred abilities stay unchanged. Consequently, investments in funds stay unchanged, making 

fund market shares and the HHI constant. 

We also consider the case in which investors are mean-variance risk-averse and 

maximize portfolio instantaneous Sharpe ratios by allocating wealth to funds and the passive 
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benchmark. We find that investors’ risk considerations decrease equilibrium fund sizes. 

However, the way to compare fund sizes relative to those of others does not depend on investors’ 

risk considerations, so the dynamics of the HHI relates to managers’ relative inferred abilities 

in a way similar to that in the risk-neutral case. 

Further, our framework is compatible with the effect of fund entrances and exits on the 

HHI, if we allow the total number of funds to change over time and set fund survival inferred 

ability levels to zero, that is, funds exit (enter) the market if their inferred abilities decrease 

(increase) to zero. These survival inferred ability levels can be regarded as those endogenously 

chosen by profit-maximizing managers. This is because funds with positive inferred abilities 

earn positive equilibrium profits and optimally choose to stay in the market to earn the profits, 

whereas without short selling of assets, funds with negative inferred abilities optimally choose 

to put zero assets under active management to avoid losses and exit AFMI. Also, equilibrium 

fund sizes become zero when managers’ inferred abilities are zero. Then, funds exit (enter) the 

market when their equilibrium fund sizes continuously decrease from positive to negative 

(increase from negative to positive) without causing jumps in fund sizes or jumps in the HHI. 

Consequently, our theoretical results on the dynamics of the HHI, which is an Itô process, still 

apply when funds exit and enter the market. In other words, funds’ entrances and exits do not 

affect the dynamics of the HHI immediately, but they change the set of funds in AFMI and 

affect the dynamics of the HHI after that. 

To model the effect of AFMI concentration on AFMI size and net alphas, we assume 

that a higher AFMI concentration increases both the productivity and cost of active 

management, and first set AFMI concentration to be exogenous.10 Then, in equilibrium higher 

AFMI concentration induces a larger (smaller) AFMI size and higher (lower) expected net 

alphas if and only if higher AFMI concentration exerts a larger (smaller) impact on the 

productivity of active management than on the cost of active management. Consequently, 

AFMI size and expected net alphas move in the same direction:  either both increase with 

AFMI concentration or both decrease with it. Furthermore, AFMI size and expected net alphas 

are either both convex in AFMI concentration or both concave in AFMI concentration. These 

 
10 This assumption is consistent with those of Feldman, Saxena, and Xu (2020, 2021). See discussions in Section 
4.2. 
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theoretical predictions are consistent with those of Proposition RA3 in Feldman, Saxena, and 

Xu (2020). If we endogenize AFMI concentration and calculate it as the HHI in this framework, 

then a positive shock in a fund’s return, which induces a positive change in the manager’s 

inferred ability, has direct instantaneous positive effects on the fund’s net alpha and on AFMI 

size. It also has indirect instantaneous effects on the fund’s net alpha and AFMI size through 

the HHI. That is, the change in this manager’s inferred ability increases or decreases the HHI, 

depending on parameter values; consequently, the change in the HHI increases (decreases) both 

the fund’s net alpha and AFMI size, if the change in the HHI induces larger (smaller) 

productivities of active management than the costs of active management. These results on the 

dynamics in AFMI over time are new compared to those of Feldman, Saxena, and Xu (2020), 

which studies one-period fixed-point equilibria. 

Regarding the empirical AFMI concentration levels, we find that in the U.S. active 

equity mutual fund market, HHIs at fund level and at fund family level have fluctuated over 

the last thirty-one years, consistent with a framework with dynamic unobservable manager 

abilities and inconsistent with a framework with constant such abilities. This finding is 

consistent with those of Feldman and Xu (2021). Also, we find that the HHI at fund level (at 

fund family level) are more correlated with the large funds’ (fund families’) market shares than 

the number of funds (fund families) in the market, showing that the relative inferred abilities 

that induce market shares are more relevant than the number of competitors in analyzing the 

HHI. Therefore, it is important to study heterogeneous managers where the HHI captures 

managers’ relative inferred abilities, instead of homogeneous managers, where the HHI is 

simply the inverse of the number of competitors. In addition, although the number of funds and 

the number of fund families increase over time and their time series have a correlation 

coefficient close to 1, HHIs at fund level and at fund family level evolve with quite different 

time patterns and have a correlation coefficient of only 0.17 . This implies that AFMI 

concentrated at fund level is not necessarily concentrated at fund family level, and vice versa. 

Using only the HHI at fund level or the HHI at fund family level might not represent AFMI 

concentration well. 

We also find that from 1995 to the early 2000s, the number of funds and fund families 

keeps increasing, and the HHIs at both fund level and fund family level decrease. Wahal and 
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Wand (2011) shows that in this period, incumbents in the mutual fund market that have a high 

overlap in their portfolio holdings with those of new entrants experience lower fund flows and 

lower alphas. Kosowski, Timmermann, Wermers, and White (2006) and Fama and French 

(2010) find a decrease in fund manager performance in similar periods. Our model can explain 

these stylized empirical findings coherently. As new funds and fund families hold portfolios 

similar to those of the incumbents, as Wahal and Wand (2011) discover, funds’ inferred abilities 

become more similar. Similar funds’ inferred abilities result in similar equilibrium fund sizes, 

so the HHI decreases. The decrease in the HHI might decrease the productivity of funds’ active 

management more than the cost of active management, because when more managers hold 

similar active portfolios and trade on similar assets, it is much more difficult for them to find 

opportunities for abnormal returns. Consequently, the decrease in the HHI induces lower fund 

sizes and fund net alphas. 

We contribute to the literature in the following ways. To our best knowledge, we 

develop the first model of dynamic equilibrium AFMI concentration, under a framework of 

multiple heterogeneous managers with dynamic unobservable abilities. We show that our 

theoretical results are valid whether investors are risk neutral or mean-variance risk averse, and 

whether there are fund entrances or exits. Our model can explain stylized findings regarding 

AFMI concentration, size, and performance. In addition, our theoretical results provide 

guidance for future research on empirical AFMI concentration. For example, we highlight 

potential discrepancies of AFMI concentration dynamics at fund and family levels. 

The rest of this paper is organized as follows. Section 2 introduces our model. Section 

3 provides simulation results of our equilibria. Section 4 discusses an extension of our model 

where AFMI HHI affects fund net alpha productions. Section 5 illustrates the empirical HHI, 

explains some stylized findings of AFMI concentration, size, and performance, and provides 

guidance for future research. Section 6 concludes. 

2 The Model 

We introduce a rational equilibrium framework to study the dynamics of AFMI 

concentration. We first demonstrate how investors and managers infer managers’ dynamic 

unobservable abilities and form equilibrium fund sizes by solving, respectively, investors’ 
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portfolio optimization problems and managers’ profit-maximizing problems. Our baseline 

model assumes risk-neutral investors; then we introduce a model with mean-variance risk-

averse investors. We also discuss how funds’ entrances and exits affect our analyses of the 

dynamics of AFMI concentration. 

Some of our model settings are similar to those of Berk and Green (2004), Brown and 

Wu (2016), and Feldman and Xu (2021).11 Also, in our model, investors can invest in multiple 

independent heterogeneous active funds, each with one manager, and in a passive benchmark 

portfolio. This multiple-fund setting is similar to the one in Brown and Wu (2016). Within a 

continuous-time framework, we study the active fund managers and investors over a finite time 

interval, at times 𝑡, 𝑡 ∈ [0,𝑇], where 𝑇 ,𝑇 > 0 is a constant. 

2.1 Observable Fund Returns and Unobservable Manager Abilities:  Filtering 

Let 𝛏𝐭, 0 ≤ 𝑡 ≤ 𝑇 be an 𝑛 × 1 vector of active funds’ gross share prices, i.e., share 

price before fund costs and fees, where the 𝑖th element is 𝜉௜,௧, 𝑖 = 1, … , 𝑛, and 𝑛 ≥ 2. Then, 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 is the 𝑛 × 1 vector of the instantaneous fund gross rates of return, where 𝐈(𝛏𝐭) is 

an 𝑛 × 𝑛  diagonal matrix with 𝜉௜,௧  as the 𝑖 th diagonal element.12  For simplification, we 

assume that active funds have beta loads of one on the passive benchmark portfolio. To focus 

on the active funds’ return, similar to Feldman and Xu (2021), we normalize the passive 

benchmark portfolio’s return to zero so that the vector of instantaneous fund gross returns in 

excess of the passive benchmark is also 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 . Hereafter, we call the active funds’ 

instantaneous gross alphas 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭, briefly, gross alphas. 

The active funds’ gross alphas depend on the 𝑛 × 1 vector of active fund managers’ 

instantaneous abilities, 𝛉𝐭, 0 ≤ 𝑡 ≤ 𝑇, to beat the benchmark, where the 𝑖th element is 𝜃௜,௧, 𝑖 = 1, … ,𝑛 . We call them briefly, abilities. The abilities are unobservable to both fund 

managers and investors. Fund managers and investors learn about 𝛉𝐭 by observing the history 

of fund gross alphas 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭, 0 ≤ 𝑠 ≤ 𝑡 (or equivalently by observing gross fund share 

prices 𝛏𝐬 , 0 ≤ 𝑠 ≤ 𝑡 ). We assume a complete probability space (Ω,ℱ,ℙ)  with filtration 
 

11 Similar to Berk and Green (2004), Brown and Wu (2016), and Feldman and Xu (2021), managers and investors 
are symmetrically informed; the model is in partial equilibrium; managers’ actions do not affect the passive bench-
mark returns; and we do not model sources of managers’ abilities to outperform the passive benchmarks portfolios. 
12 The 𝑛 × 1 vector 𝐝𝛏𝐭 has its 𝑖th element as 𝑑𝜉௜,௧, which is the differential of 𝜉௜,௧, 𝑖 = 1, … ,𝑛. Hereafter, a 
vector with 𝐝 on the left has a similar definition. 
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ሼℱ௧ሽ଴ஸ௧ஸ், a right-continuous, nondecreasing family of sub-𝜎-algebras. An 𝑛 × 1 vectors of 

independent Wiener processes, 𝐖𝟏,𝐭  and 𝐖𝟐,𝐭 , 0 ≤ 𝑡 ≤ 𝑇 , are adapted to this filtration, 

where their 𝑖th elements are 𝑊ଵ௜,௧ and 𝑊ଶ௜,௧, 𝑖 = 1, … ,𝑛, respectively.13 The unobservable 𝛉𝐭 and the observable 𝛏𝐭 evolve as follows: 

 𝐝𝛉𝐭 = (𝐚𝟎 + 𝐚𝟏𝛉𝐭)𝑑𝑡 + 𝐛𝟏𝐝𝐖𝟏,𝐭 + 𝐛𝟐𝐝𝐖𝟐,𝐭 (1) 

 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝛉𝐭𝑑𝑡 + 𝐁𝐝𝐖𝟐,𝐭 (2) 

with initial conditions 𝛉𝟎  and 𝛏𝟎 , respectively. The 𝑛 × 𝑛  constant diagonal matrices 𝐚𝟎 , 𝐚𝟏, 𝐛𝟏, 𝐛𝟐, 𝐀, and 𝐁 have diagonal elements 𝑎௜,଴, 𝑎௜,ଵ, 𝑏௜,ଵ, 𝑏௜,ଶ, 𝐴௜, and 𝐵௜, 𝑖 = 1, … ,𝑛, 

respectively. To make economic sense, we assume that 𝐴௜ > 0 (otherwise an ability becomes 

a “disability”). For simplicity and without loss of generality, we assume 𝐵௜ > 0. While abilities 

are unobservable to managers and investors, the evolution processes (“laws of motion”) and all 

parameter values are common knowledge. 

This setting implies the following. First, the abilities, 𝛉𝐭, to beat the benchmark follow 

dynamic processes. Second, the fund gross alphas, 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 , depend on the managers’ 

abilities and on random shocks. As 𝐴௜ > 0, 𝑖 = 1, … ,𝑛, a manager with positive (negative) 

ability tends to create positive (negative) fund gross alpha, and the larger 𝐴௜ is, the higher is 

the sensitivity of gross alpha to ability. Also, 𝐵௜, 𝑖 = 1, … , 𝑛 is the diffusion coefficient of 

fund gross alpha, which positively corresponds to its volatility. Third, as 𝐚𝟎, 𝐚𝟏, 𝐛𝟏, 𝐛𝟐, 𝐀, 

and 𝐁 are diagonal matrices, over time a manager’s ability and gross alpha are independent 

of other managers’.14 ,15  Fourth, where 𝑏௜,ଶ > 0 (𝑏௜,ଶ < 0) , that is, 𝑏௜ଶ  is strictly positive 

(negative), the shock 𝑊ଶ௜,௧  affects manager 𝑖 ’s ability and fund gross alpha, which, 

consequently, are instantaneously positively (negatively) correlated, as 𝑏௜,ଶ𝐵௜ > 0 (𝑏௜,ଶ𝐵௜ <0) . Where 𝑏௜,ଶ = 0 , and 𝑏௜,ଵ > 0,  manager 𝑖 ’s ability and gross alpha are affected by 

independent shocks, thus are instantaneously uncorrelated. A larger 𝑏௜,ଶ  relative to 𝑏௜,ଵ 

 
13 For any 𝑖 and 𝑗, 𝑑𝑊ଵ௜,௧𝑑𝑊ଶ௝,௧ = 0; and for any 𝑖 ≠ 𝑗, 𝑑𝑊ଵ௜,௧𝑑𝑊ଵ௝,௧ = 0 and 𝑑𝑊ଶ௜,௧𝑑𝑊ଶ௝,௧ = 0. 
14 For any 𝑖 ≠ 𝑗, 𝑑𝜃௜,௧𝑑𝜃௝,௧ = 0, 𝑑𝜃௜,௧൫𝑑𝜉௝,௧/𝜉௝,௧൯ = 0, and ൫𝑑𝜉௜,௧/𝜉௜,௧൯൫𝑑𝜉௝,௧/𝜉௝,௧൯ = 0. 
15 Current literature shows that in some fund families, as funds are managed by the same team of managers, their 
abilities and alphas are correlated such that we can learn the ability of a fund from another fund’s performance 
[e.g., Brown and Wu (2016) and Choi, Kahraman, and Mukherjee (2016)]. In this sense, we can think of a “fund” 
in our model as a fund family in the real world such that the ability and alpha of a fund family are independent of 
other fund families’. Under a similar framework, we can analyze the AFMI concentration based on the market 
shares of fund families. The insights of this model of fund family concentration are similar to those of our model. 
To simplify our discussion, we call each institution as a “fund” in this paper. 
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implies a higher instantaneous correlation between manager 𝑖’s gross alpha and ability. 

To facilitate our analysis, we define the following terms: 

• ℱ௧𝛏 ≜ : the 𝜎 -algebras generated by ሼ𝛏𝐬, 0 ≤ 𝑠 ≤ 𝑡ሽ , with ቄℱ௧𝛏ቅ଴ஸ௧ஸ்  as the 

corresponding filtration over 0 ≤ 𝑡 ≤ 𝑇; 

• 𝐦𝐭 ≜: the 𝑛 × 1 vector of mean of 𝛉𝐭 conditional on the observations 𝛏𝐬, 0 ≤ 𝑠 ≤𝑡, i.e., 𝐦𝐭 ≜ E൫𝛉𝐭|ℱ௧𝛏൯; 
• 𝛄𝐭 ≜:  the 𝑛 × 𝑛  covariance matrix of 𝛉𝐭  conditional on the observations 𝛏𝐬 , 0 ≤𝑠 ≤ 𝑡, i.e., 𝛄𝐭 ≜ Eൣ(𝛉𝐭 − 𝐦𝐭)(𝛉𝐭 − 𝐦𝐭)′|ℱ௧𝛏൧. 
We assume that the conditional distribution of 𝛉𝟎,  given 𝛏𝟎  (the prior distribution), is 

Gaussian, 𝑁(𝐦𝟎,𝛄𝟎), where 𝛄𝟎 is a 𝑛 × 𝑛 diagonal matrix, and elements of 𝛏𝟎, 𝐦𝟎, and 𝛄𝟎 have finite values. 

Managers and investors update their estimates of 𝛉𝐭 using their observations of 𝛏𝐭 in 

a Bayesian fashion. As 𝐦𝐭  is the expected abilities inferred from observable fund returns, 

hereafter we call 𝐦𝐭 as inferred abilities for short. This type of model is presented in Liptser 

and Shiryaev (2001a, Ch. 8; 2001b, Ch. 12).16 The techniques are called optimal linear filtering 

and are used in numerous previous studies. 17  The following proposition describes how 

managers and investors form and update their estimates of managers’ abilities 𝛉𝐭. 
Proposition 1. 

a. Let ℱ௧𝛏𝟎,𝐖ഥ , 0 ≤ 𝑡 ≤ 𝑇, be the 𝜎-algebras generated by ሼ𝛏𝟎, 𝐖ഥ𝐬, 0 ≤ 𝑠 ≤ 𝑡ሽ. Then, 

 𝐖ഥ𝐭 = න 𝐁ି𝟏[𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 − 𝐀𝐦𝐬𝑑𝑠]௧
଴  (3) 

is a vector of independent Wiener process with respect to the filtration ቄℱ௧𝛏ቅ଴ஸ௧ஸ், with 

the 𝑖th element as 𝑊ഥ௜,௧ and with 𝐖ഥ𝟎 being a zero 𝑛 × 1 vector. The 𝜎-algebras ℱ௧𝛏 
and ℱ௧𝛏𝟎,𝐖ഥ  are equivalent. 

 
16 The models presented by Liptser and Shiryaev (2001a,b) allow all model parameters to be stochastic, functions 
of the stochastic gross alpha. For simplicity, we introduce a linear framework with constant parameters. 
17 See, for example, Dothan and Feldman (1986), Feldman (1989, 2007), Berk and Stanton (2007), Dangl, Wu, 
and Zechner (2008), Brown and Wu (2013, 2016), and Feldman and Xu (2021). 
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b. 𝐖ഥ𝐭 innovates the inferred abilities 𝐦𝐭. The variables 𝐦𝐭, 𝛏𝐭, and 𝛄𝐭 are the unique, 

continuous, ℱ௧𝛏-measurable solutions of the system of equations 

 𝐝𝐦𝐭 = (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡 + 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭, (4) 

 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 = 𝐀𝐦𝐭𝑑𝑡 + 𝐁𝐝𝐖ഥ𝐭, (5) 

 𝐝𝛄𝐭 = [𝐛𝟏𝐛𝟏 + 𝐛𝟐𝐛𝟐 + 2𝐚𝟏𝛄𝐭 − 𝛔𝐦(𝛄𝐭)𝝈𝒎ᇱ (𝛄𝐭)]𝑑𝑡, (6) 

where 

 𝛔𝐦(𝛄𝐭) ≜ (𝐛𝟐𝐁 + 𝐀𝛄𝐭)′𝐁ି𝟏, (7) 

with initial conditions 𝛏𝟎, 𝐦𝟎, and 𝛄𝟎. 

c. The random process (𝛉𝐭, 𝛏𝐭), 0 ≤ 𝑡 ≤ 𝑇 is conditionally Gaussian given ℱ௧𝛏. 
Proof. Theorem 8.1 of Liptser and Shiryaev (2001a) and Theorem 12.5 of Liptser and Shiryaev 

(2001b) jointly provide the proof of Proposition 1a. Theorem 12.5 of Liptser and Shiryaev 

(2001b) provides the proof of Proposition 1b. Theorem 11.1 of Liptser and Shiryaev (2001b) 

provides the proof of Proposition 1c. □ 

The technical requirements to prove the theorems are regular conditions over the period 0 ≤𝑡 ≤ 𝑇, such as boundedness of parameter values, integrality of variables, and finite moments 

of variables.18 The intuition of these requirements is that, over a finite time period, almost 

surely manager abilities, fund gross alphas, and their variations should be finite so that the 

learning processes are well defined. These requirements are satisfied, due to our finite 

parameter values, finite initial values, and the finite horizon within which we study our model. 

In the real world, abilities that keep improving or deteriorating over a short period, or abilities 

that revert to a finite mean over a long period, would satisfy the technical requirements and 

follow our learning processes. 

The Wiener process 𝐖ഥ𝐭  represents the innovation shocks to estimates of manager 

unobservable abilities. By Proposition 1a, the process 𝛏𝐭 and the innovation process 𝐖ഥ𝐭 with 𝛏𝟎 generate equivalent information. 

Proposition 1b implies that investors make their optimal decisions in two steps. First, 

they observe the history of the funds’ share prices 𝛏𝐭 and restructure the state space to consist 

 
18 See the requirements of the corresponding theorems in Liptser and Shiryaev (2001a, 2001b). 
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of only observable processes while maintaining informational equivalence,19 and generate a 

posterior distribution of the fund manager abilities, i.e., the first moment of inferred abilities 𝐦𝐭, and so on. Second, they use their posterior estimate, 𝐦𝐭, to predict the fund gross alphas 

in the forthcoming future, as shown by Equation (5). They use this prediction in solving their 

problems. Notice that in these optimization processes, the unobservable manager abilities 𝛉𝐭 
is replaced by its observable conditional mean, 𝐦𝐭, updated by a new Wiener process 𝐖ഥ𝐭, and 

that 𝐦𝐭 is continuously updated as a function of the dynamic conditional covariance matrix 𝛄𝐭 . Hence, investors’ problems become Markovian, which makes the problems tractable 

(allowing a state vector solution).20 

Taking a closer look at 𝐝𝛄𝐭 , we find that as 𝛄𝟎  and the parameter matrices in 

Equations (6) and (7) are diagonal, 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal. Then, we can define the 𝑖th 

diagonal element of 𝛄𝐭 as 𝛾௜,௧, 𝑖 = 1, … ,𝑛, which is the variance of 𝜃௜,௧ conditional on the 

observations of share prices, representing the imprecision of the estimate 𝑚௜,௧. We have 

 𝑑𝛾௜,௧ = ൣ𝑏௜,ଵଶ + 𝑏௜,ଶଶ + 2𝑎௜,ଵ𝛾௜,௧ − 𝜎௜,௠ଶ ൫𝛾௜,௧൯൧𝑑𝑡, (8) 

where 𝜎௜,௠൫𝛾௜,௧൯, 𝑖 = 1, … ,𝑛, is the 𝑖th diagonal element of 𝛔𝐦(𝛄𝐭) that 

 𝜎௜,௠൫𝛾௜,௧൯ ≜ ൫𝑏௜,ଶ𝐵௜ + 𝐴௜𝛾௜,௧൯/𝐵௜ . (9) 

As 𝛄𝐭 and 𝛔𝐦(𝛄𝐭) are diagonal, by Equation (4), 𝑚௜,௧ is unaffected by 𝑊ഥ௝,௧ or 𝛾௝,௧ for any 𝑖 ≠ 𝑗. Thus, a manager’s inferred ability and its precision are independent of those of other 

managers, which simplifies our analyses in the following sections.21 

Depending on parameter values, 𝑑𝛾௜,௧ can be positive, negative, or zero; that is, the 

precision of the future estimates of manager 𝑖 ’s ability level can increase, decrease, or be 

unchanged for the next small time period. In particular, where 𝑏௜,ଶ𝐵௜ , the instantaneous 

 
19 See Feldman (1992). 
20  The elliptical nature our conditionally Gaussian structure allows closure of the filter after two conditional 
moments. Otherwise, all the conditional higher moments would be part of the filter, and the choice of which higher 
moments to ignore would be a function of the desired precision. 
21 If the parameter matrices in Equations (6) and (7) and the initial values are not diagonal, then a manager’s 
inferred ability could depend on innovation shocks to other funds, and the precision of the inferred ability could 
depend on the correlations of this manager’s ability and gross alpha with other managers’. Consequently, a fund’s 
equilibrium size, could depend on other fund managers’ inferred abilities. This complicates our discussions and 
does not affect our main insights, so we do not introduce this complexity. 
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covariance between 𝑑𝜉௜,௧/𝜉௜,௧ and 𝜃௜,௧,22 and/or 𝐴௜, the sensitivity of the drift of 𝑑𝜉௜,௧/𝜉௜,௧ 
to 𝜃௜,௧, are sufficiently large (small), 𝑑𝛾௜,௧ would be negative (positive). In other words, if 

manager 𝑖 ’s gross alpha and ability are more (less) correlated instantaneously and/or the 

change in the gross alpha is more (less) sensitive to the ability, then the precision of investors’ 

posterior estimates of manager 𝑖 ’s ability increases (decreases). Also, where 𝐵௜ଶ , the 

instantaneous variance of 𝑑𝜉௜,௧/𝜉௜,௧ ,23  is sufficiently small (large), 𝑑𝛾௜,௧  also is negative 

(positive). In other words, if manager 𝑖’s gross alpha process is less (more) volatile, then the 

precision of investors posterior estimates of manager 𝑖’s ability increases (decreases). 

To make economic sense, we assume a nonnegative 𝑏௜,ଶ, 𝑖 = 1, … , 𝑛, which induces a 

positive correlation (𝑏௜,ଶ𝐵௜ + 𝐴௜𝛾௜,௧) between inferred ability and performance shocks (because 𝐵௜ and 𝐴௜ are positive).24 Then, the sensitivity of inferred ability to innovation shocks in fund 

gross alpha, 𝜎௜,௠൫𝛾௜,௧൯ is always positive. In other words, under this setting, for each fund, a 

positive (negative) shock in fund gross alpha induces an increase (a decrease) in the manager’s 

inferred ability. Then, depending on parameter values, the dynamics of 𝑑𝛾௜,௧, induces a 𝛾௜,௧ 
that monotonically increases, decreases, or stays unchanged over time. Consequently, 𝜎௜,௠൫𝛾௜,௧൯, monotonically increases, decreases, or stays unchanged, respectively, over time. 

By Proposition 1c, the conditional distribution of 𝛉𝐭 is Gaussian. Then, conditional 

distribution of 𝛉𝐭 is determined by the first two moments, 𝐦𝐭 and 𝛄𝐭. As the parameters 𝐚𝟏, 𝐛𝟏, 𝐛𝟐, 𝐀, and 𝐁 are constant matrices and 𝛄𝟎 is given, 𝛄𝐭 is deterministic, as shown in 

Proposition 1b. Consequently, 𝛔𝐦(𝛄𝐭) , is also deterministic but dynamic. However, 𝐦𝐭  is 

stochastic and its future values are unknown. Therefore, investors know the precision of their 

future estimates of manager abilities in advance, although they do not know the future estimates 

of these abilities. The fact that the random process (𝛉𝐭, 𝛏𝐭) , 0 ≤ 𝑡 ≤ 𝑇  is conditionally 

 
22 This is because Cov൫𝑑𝜃௜,௧,𝑑𝜉௜,௧/𝜉௜,௧൯ = 𝑏୧,ଶ𝐵௜𝑑𝑡. 
23 This is because Cov൫𝑑𝜉௜,௧/𝜉௜,௧,𝑑𝜉௜,௧/𝜉௜,௧൯ = 𝐵௜ଶ𝑑𝑡. 
24 This is because a negative 𝑏௜,ଶ induces a negative instantaneous/idiosyncratic correlation, which can give rise 
to negative total correlation. If 𝛾௜,௧ weighs the positive systematic source of correlation, 𝐴௜ , insufficiently high; 
then the negative instantaneous/idiosyncratic source of correlation (𝑏௜,ଶ𝐵௜) dominates. Thus, under these special 
parameter values, which we do not allow here, the dynamics 𝛾௜,௧ may induce correlation between inferred ability 
and performance shocks, which changes sign over time, resulting in a transient nonmonotonic relation between 
performance shocks and inferred ability even under the linear structure that we analyze in this section. For detailed 
analysis of this nonmonotonicity, see Feldman (1989, Proposition 4). 
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Gaussian, given ℱ௧𝛏, facilitates the generation of the posterior estimate of gross alphas in closed 

form. 

2.2 Investors’ Optimizations and Fund Managers’ Optimizations 

Using the above filter to re-represent the state space ሼ𝛉𝐭, 𝛏𝐭ሽ in terms of observable 

variables ሼ𝛏𝐭,𝐦𝐭, 𝛄𝐭ሽ, we can solve investors’ and fund managers’ optimization problems. 

We assume that there are infinitely many small risk-neutral investors in the market and 

that each investor’s investment decision does not affect the funds’ returns and sizes, although 

all investors together do affect them. An investor’s portfolio return depends on three 

components:  fund gross alphas, management fees, and fund costs. We assume that each fund 

manager chooses the amount of the fund to actively manage at each time 𝑡  under fixed 

management fees 𝑓௜, 𝑖 = 1, … , 𝑛. 

Similar to Berk and Green (2004), Feldman, Saxena, and Xu (2020, 2021), and Feldman 

and Xu (2021) we assume decreasing returns to scale at the fund level. For fund 𝑖, 𝑖 = 1, … , 𝑛, 

at time 𝑡, fund costs variable 𝐶௜൫𝑞௜,௧௔ ൯ is a function of the fund amount that is under active 

management 𝑞௜,௧௔ , 

 𝐶௜൫𝑞௜,௧௔ ൯ = 𝑐௜𝑞௜,௧௔ ଶ. (10) 

Of 𝑞௜,௧, the total asset managed by fund 𝑖, i.e., fund 𝑖’s size, the amount 𝑞௜,௧ − 𝑞௜,௧௔  (𝑞௜,௧ −𝑞௜,௧௔ ≥ 0) is invested in the passive benchmark, earning the passive benchmark portfolio return 

and inducing no fund costs. The amount 𝑞௜,௧௔  generates fund gross alphas. 

At time 𝑡, let the price of fund 𝑖’s assets under management net of fund costs and fees 

be 𝑆௜,௧ , 0 ≤ 𝑡 ≤ 𝑇 . Then, the active fund’s net return is 𝑑𝑆௜,௧/𝑆௜,௧ . As we normalize the 

passive benchmark portfolio’s return to zero, the active fund’s net return in excess of the passive 

benchmark is 𝑑𝑆௜,௧/𝑆௜,௧ − 0 = 𝑑𝑆௜,௧/𝑆௜,௧. Hereafter, we call 𝑑𝑆௜,௧/𝑆௜,௧ fund 𝑖’s instantaneous 

net alpha, or briefly net alpha. Based on the above discussion, we have, 

 𝑑𝑆௜,௧𝑆௜,௧ = 𝑞௜,௧௔𝑞௜,௧ 𝑑𝜉௜,௧𝜉௜,௧ − 𝐶௜൫𝑞௜,௧௔ ൯𝑞௜,௧ 𝑑𝑡 − 𝑓௜𝑑𝑡. (11) 

Similar to Berk and Green (2004) and Feldman and Xu (2021), we assume that risk-neutral 

investors supply capital with infinite elasticity to funds that have positive expected fund net 
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alphas. With sufficient capital, investors’ fund allocations drive the conditional expectation of 

fund net alphas to zero at each time 𝑡. Thus, we have the following condition in equilibrium: 

 E ቈ𝑑𝑆௜,௧𝑆௜,௧ ቤ ℱ௧𝛏቉ = 0,  ∀𝑡, 𝑖 = 1, … , 𝑛. (12) 

Taking conditional expectation on Equation (11) and setting it to zero, we have 

 𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ = 0. (13) 

Rearranging, 

 𝑓௜𝑞௜,௧ = 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ. (14) 

As any fund costs are deducted from investment returns before the returns are transferred to 

investors [as shown by the fund net alpha Equation (11)], the term 𝑓௜𝑞௜,௧ is fund manager 𝑖’s 

profit. Fund manager 𝑖 wants to maximize fund profit 𝑓௜𝑞௜,௧ by choosing 𝑞௜,௧௔ . Then, manager 𝑖’s problem is 

 max௤೔,೟ೌ 𝑓௜𝑞௜,௧ = max௤೔,೟ೌ 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ (15) 

subject to the constraint 

 0 ≤ 𝑞௜,௧௔ ≤ 𝑞௜,௧ ,  ∀ 𝑖 = 1, … ,𝑛. (16) 

As in Berk and Green (2004) and Feldman and Xu (2021), we define the lowest level 

of inferred ability that makes a fund survive as 𝑚௜,௧ , 𝑖 = 1, … ,𝑛 . If 𝑚௜,௧ < 𝑚௜,௧ , fund 𝑖 
receives no investments from investors and exits the market. Hereafter, we briefly call 𝑚௜,௧, 𝑖 = 1, … ,𝑛 the survival levels. Here we assume 𝑚௜,௧ ≥ 0.25 The optimal amount under active 

management and the optimal total assets under management, 𝑞௜,௧௔ ∗  and 𝑞௜,௧∗  , are not trivial 

where 𝑚௜,௧ ≥ 𝑚௜,௧; otherwise, they are both zero. 

Solving investors’ and managers’ problems, we can obtain the equilibrium optimal 

solutions for funds surviving in the market26: 

 
25 The reason is that given updated information, for fund 𝑖, the expected instantaneous gross alpha accumulated 
in 𝑑𝑡  is E൫𝑑𝜉௜,௧/𝜉௜,௧|ℱ௧𝛏൯ = 𝐴௜𝑚௜,௧𝑑𝑡 , with 𝐴௜ > 0 . If 𝑚௜,௧ < 0 , the expected instantaneous gross alpha is 
negative. With positive fund costs and fees, the expected instantaneous net alpha earned by investors in 𝑑𝑡 would 
be substantially smaller than zero, so they would switch their investments to the passive benchmark portfolio. 
Thus, we do not allow 𝑚௜,௧ < 0 for a surviving fund. 
26 Similar to Berk and Green (2004) and Feldman and Xu (2021), we assume that managers choose 𝑓௜ such that 
the constraint 0 ≤ 𝑞௜,௧௔ ∗ ≤ 𝑞௜,௧∗ , is satisfied for 𝑖 = 1, … ,𝑛, so this constraint does not affect the optimization. See 
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 𝑞௜,௧௔ ∗ = 𝐴௜𝑚௜,௧2𝑐௜  (17) 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ4𝑐௜𝑓௜ . (18) 

To simplify the notations, we define fund 𝑖’s size factor as 𝑋௜, such that 

 𝑋௜ ≜ 14𝑐௜𝑓௜ . (19) 

The higher the decreasing returns to scale coefficient 𝑐௜ and the higher the management fee 𝑓௜ are, the lower is fund 𝑖’s size factor and, then, the lower is the equilibrium fund size 𝑞௜,௧∗ . 

Then, 

 𝑞௜,௧∗ = 𝑋௜൫𝐴௜𝑚௜,௧൯ଶ. (20) 

Proof. See the Appendix. □ 

2.3 Equilibrium Market Power and Market Structure 

We demonstrate now that AFMI dynamic concentration is the key measure to study the 

AFMI’s industrial organization, while other common measures are less informative. 

As investors receive net alphas from funds, any fund costs are transferred to investors 

as reductions in fund net alphas so that fund managers bear no costs in operation. Then, in 

equilibrium, for 𝑖 = 1, … ,𝑛, manager 𝑖’s profit is the revenue 𝑓௜𝑞௜,௧∗ , and the profit rate on 

each dollar under management is 𝑓௜, a constant. A manager’s profit margin, i.e., the difference 

between revenue and costs, divided by the revenue, is always one ൣ൫𝑓௜𝑞௜,௧∗ − 0൯ 𝑓௜𝑞௜,௧∗ൗ = 1൧. 
These results imply that there are no dynamics in a manager’s profit rate or profit margin. Also, 

if we calculate a manager’s profit markup, i.e., revenue divided by costs, we find that the profit 

markup ൣ= 𝑓௜𝑞௜,௧∗ 0⁄ ൧  is positive infinity. This does not imply that a manager has infinite 

profitability. Notice again that it is the investors who determine the quantity of production (fund 

sizes), and investors choose the quantity to capture any positive expected net alpha. As a 

manager’s profit rate is fixed at its constant management fee, he or she needs to attract 

investments by maximizing the expected fund net alpha as much as possible; as the manager’s 

ability to create the fund net alpha is limited, the equilibrium profit is limited. 
 

the proof of the solutions of the optimization problems in the Appendix. 
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A fund’s market power can be measured by its Lerner Index, which is the difference 

between fee and marginal cost, divided by fee. From the above discussion, we can see that a 

fund’s Lerner Index is always one [= (𝑓௜ − 0) 𝑓௜⁄ ], so in equilibrium, a fund’s market power 

is not dynamic either. In contrast, the market structure of AFMI is dynamic, as funds’ relative 

sizes change over time. Thus, to understand the dynamics of AFMI industrial organization, we 

focus on the dynamics of its market structure, in particular, the dynamics of AFMI 

concentration. 

2.4 Equilibrium AFMI Concentration 

We use the Herfindahl-Hirschman Index (HHI) to measure AFMI concentration for the 

reasons discussed in our Introduction section. Let 𝐪𝐭∗ be the 𝑛 × 1 vector of the equilibrium 

fund sizes, with the 𝑖th element as 𝑞௜,௧∗ . We have, using Equations (20) and (19),  

 𝐪𝐭∗ = 𝐀𝟐𝐈𝟐(𝐦𝐭)𝐗, (21) 

where 𝐈(𝐦𝐭) is a 𝑛 × 𝑛 diagonal matrix with the 𝑖th element as the 𝑖th element of 𝐦𝐭, and 𝐗 is a 𝑛 × 1 vector with the 𝑖th element as 𝑋௜. Then, the 𝑛 × 1 vector of the equilibrium 

fund market shares, 𝐰𝐭∗, is 

 𝐰𝐭∗ = 𝐪𝐭∗𝐪𝐭∗′𝟏, (22) 

where 𝟏 is an 𝑛 × 1 vector of ones. By definition, the equilibrium AFMI HHI (henceforth 

we briefly call it HHI) is 

 𝐻𝐻𝐼௧∗ ≜ 𝐰𝐭∗′𝐰𝐭∗ = 𝐪𝐭∗′𝐪𝐭∗(𝐪𝐭∗′𝟏)ଶ. (23) 

Substituting Equation (20) into Equation (23), we have 

 𝐻𝐻𝐼௧∗ = 𝐗′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗[𝐗′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]ଶ = ∑ 𝑋௜ଶ൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ 𝑋௜൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ. (24) 

From (24), we can see that HHI’s dynamics is determined by inferred abilities’ 

dynamics, i.e., 𝐻𝐻𝐼௧∗ = 𝐻𝐻𝐼௧∗(𝐦𝐭). Then, by Itô’s Lemma, we have 

 𝑑𝐻𝐻𝐼௧∗ = 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ 𝐝𝐦𝐭 + 12𝐝𝐦𝐭ᇱ 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝐝𝐦𝐭. (25) 

Substituting Equation (4) into (25) and due to the independence of 𝑊ഥ௜,௧, 𝑖 = 1, … , 𝑛, we have 
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 𝑑𝐻𝐻𝐼௧∗ = 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ (𝐚𝟎 + 𝐚𝟏𝐦𝐭)𝑑𝑡 + 𝜕𝐻𝐻𝐼௧∗𝜕𝐦𝐭′ 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭
+ 12 𝐭𝐫𝐚𝐜𝐞 ቈ𝝈𝒎ᇱ (𝛄𝐭) 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝐦𝐭′𝜕𝐦𝐭 𝛔𝐦(𝛄𝐭)቉ 𝑑𝑡. (26) 

To facilitate our discussion, we rewrite Equation (26) in scalar form: 

 𝑑𝐻𝐻𝐼௧∗ = ෍ቈ𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ ൫𝑎௜,଴ + 𝑎௜,ଵ𝑚௜,௧൯𝑑𝑡𝒏
𝒊ୀ𝟏+ 𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ 𝜎௜,௠൫𝛾௜,௧൯𝑑𝑊ഥ௜,௧ + 12 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ଶ 𝜎௜,௠ଶ 𝑑𝑡቉ , (27) 

where 

 𝜕𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ = 4𝑋௜𝐴௜ଶ𝑚௜,௧ × 𝑞௜ ∑ 𝑞௝௡௝ୀଵ − ∑ 𝑞௝ଶ௡௝ୀଵ൫∑ 𝑞௝௡௝ୀଵ ൯ଷ  (28) 

and 

 𝜕ଶ𝐻𝐻𝐼௧∗𝜕𝑚௜,௧ଶ = 4𝑋௜𝐴௜ଶ × 

⎣⎢⎢
⎢⎡3𝑞௜ ∑ 𝑞௝௡௝ୀଵ + 6𝑞௜൫∑ 𝑞௝ଶ௡௝ୀଵ ൯൫∑ 𝑞௝௡௝ୀଵ ൯ − 8𝑞௜ଶ − ∑ 𝑞௝ଶ௡௝ୀଵ൫∑ 𝑞௝௡௝ୀଵ ൯ଷ ⎦⎥⎥

⎥⎤. (29) 

From Equation (28), we can see that if fund 𝑖’s inferred ability is sufficiently large 

(small) relative to other funds’ such that its size is sufficiently large (small) relative to other 

funds’ sizes, then డுுூ೟∗డ௠೔,೟  is positive (negative).27 Then, as shown in Equation (27), holding 

other managers’ inferred abilities unchanged, an increase in manager 𝑖’s inferred ability, due 

to a sufficiently large drift term in inferred ability, 𝑎௜,଴ + 𝑎௜,ଵ𝑚௜,௧  or a sufficiently large 

innovation shock in performance, 𝑑𝑊ഥ௜,௧, has a positive (negative) impact on the change in the 

HHI, 𝑑𝐻𝐻𝐼௧∗. Also, higher 𝑚௜,௧, 𝑋௜, and 𝐴௜ all make this positive (negative) impact stronger. 

The intuition is that, if manager 𝑖’s inferred ability is sufficiently large relative to other 

managers’ inferred abilities, then fund 𝑖’s size is sufficiently large relative to other funds’ sizes, 

dominating in the market. A higher inferred ability attracts more investment to fund 𝑖, making 
 

27  If 𝑞௜  is sufficiently (small) large relative to 𝑞௝ , ∀𝑗 ≠ 𝑖 , then 𝑞௜ ∑ 𝑞௝௡௝ୀଵ = ∑ 𝑞௜𝑞௝௡௝ୀଵ ≥ ∑ 𝑞௝ଶ௡௝ୀଵ  
(𝑞௜ ∑ 𝑞௝௡௝ୀଵ = ∑ 𝑞௜𝑞௝௡௝ୀଵ ≤ ∑ 𝑞௝ଶ௡௝ୀଵ ). These two inequalities are due to the nonnegativity of fund sizes. 
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it larger and the AFMI more concentrated at fund 𝑖. Further, if manager 𝑖’s inferred ability, 

fund size factor, and sensitivity of gross alpha to ability, are larger, then fund 𝑖’s size becomes 

even larger, making the AFMI more concentrated. On the other hand, if manager 𝑖’s inferred 

ability is sufficiently small relative to other managers’ inferred abilities, then fund 𝑖’s size is 

sufficiently small relative to other funds’ sizes. A higher inferred ability attracts more 

investment to fund 𝑖, making its size closer to other funds’ and then making the AFMI less 

concentrated. In this case, if manager 𝑖’s inferred ability, fund size factor, and sensitivity of 

gross alpha to ability, are larger, then fund 𝑖’s size becomes larger and closer to other funds’, 

making the AFMI less concentrated. 

Regarding the second-order effect shown in Equation (29), if manager 𝑖 ’s inferred 

ability is sufficiently large (small) relative to other managers’ such that fund 𝑖 ’s size is 

sufficiently large (small) relative to other funds’ sizes, then డమுுூ೟∗డ௠೔,೟మ  is negative and 𝐻𝐻𝐼௧∗ is 

concave in 𝑚௜,௧ .28  Then, over the next infinitesimal period, this concavity has a negative 

impact on 𝑑𝐻𝐻𝐼௧∗. If all managers’ inferred abilities are sufficiently close to each other’s such 

that funds’ sizes are sufficiently close, making 𝐻𝐻𝐼௧∗ close to its minimum value 1/𝑛, then డమுுூ೟∗డ௠೔,೟మ  is positive and 𝐻𝐻𝐼௧∗ is convex in 𝑚௜,௧.29 Then, over the next infinitesimal period, 

this convexity has a positive impact on 𝑑𝐻𝐻𝐼௧∗. Also, if 𝐻𝐻𝐼௧∗ is concave (convex) in 𝑚௜,௧, 
then a higher 𝑋௜ and a higher 𝐴௜ both make this concavity (convexity) stronger. 

The intuition is that, if fund 𝑖’s market share is sufficiently large (small) due to manager 𝑖’s sufficiently large (small) inferred ability, then the AFMI is concentrated at fund 𝑖 (at other 

funds). Although a higher (lower) inferred ability of manager 𝑖  can make the AFMI more 

concentrated at fund 𝑖 (at other funds), it becomes more and more difficult to increase the 

concentration in this way. On the other hand, if all managers’ inferred abilities are close to each 

 
28  If 𝑞௜  is sufficiently small relative to 𝑞௝ , ∀𝑗 ≠ 𝑖 , then the term −∑ 𝑞௝ଶ௡௝ୀଵ   dominates in the expression 3𝑞௜ ∑ 𝑞௝௡௝ୀଵ + ଺௤೔ቀ∑ ௤ೕమ೙ೕసభ ቁቀ∑ ௤ೕ೙ೕసభ ቁ − 8𝑞௜ଶ − ∑ 𝑞௝ଶ௡௝ୀଵ , making it negative. If 𝑞௜ is sufficiently large relative to 𝑞௝, ∀𝑗 ≠ 𝑖, 
then 3𝑞௜ ∑ 𝑞௝௡௝ୀଵ + ଺௤೔ቀ∑ ௤ೕమ೙ೕసభ ቁቀ∑ ௤ೕ೙ೕసభ ቁ < 9𝑞௜ଶ  and −8𝑞௜ଶ − ∑ 𝑞௝ଶ௡௝ୀଵ < −9𝑞௜ଶ , making 3𝑞௜ ∑ 𝑞௝௡௝ୀଵ + ଺௤೔ቀ∑ ௤ೕమ೙ೕసభ ቁቀ∑ ௤ೕ೙ೕసభ ቁ −8𝑞௜ଶ − ∑ 𝑞௝ଶ௡௝ୀଵ < 9𝑞௜ଶ − 9𝑞௜ଶ = 0. 

29  If all funds’ sizes are sufficiently close, then the expression 3𝑞௜ ∑ 𝑞௝௡௝ୀଵ + ଺௤೔ቀ∑ ௤ೕమ೙ೕసభ ቁቀ∑ ௤ೕ೙ೕసభ ቁ − 8𝑞௜ଶ − ∑ 𝑞௝ଶ௡௝ୀଵ ≈(2𝑛 − 2)𝑞௜ଶ > 0 as 𝑛 ≥ 2. 
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other’s such that funds’ sizes are close, then a larger and a smaller inferred ability of manager 𝑖  can both make fund 𝑖 ’s size deviate from other funds’ sizes, making the AFMI more 

concentrated. It is easier to make fund 𝑖’s size deviate from other funds’ sizes and to increase 

the HHI if the absolute change in manager 𝑖’s inferred ability is larger in this case. Further, a 

higher fund size factor and a higher sensitivity of gross alpha to ability both make fund 𝑖’s size 

larger and, thus, more relevant in AFMI. Then, holding the relative abilities thus the relative 

sizes unchanged, if the HHI is concave (convex) in manager 𝑖’s inferred ability, the larger size 

of fund 𝑖 intensifies the concavity (convexity) effect. 

The following proposition summarizes the above results. 

Proposition RN. If a manager’s inferred ability is higher than the survival level, then we have 

the following results of this manager’s inferred ability and the HHI. 

a. If this manager’s inferred ability is sufficiently large (small) relative to other managers’ 

such that the fund’s size is sufficiently large (small) relative to other funds’, then an 

increase in this manager’s inferred ability, due to a sufficiently large drift term in 

inferred ability or a sufficiently large innovation shock in performance, has a positive 

(negative) impact on the change of the HHI. This positive (negative) impact is stronger 

if this manager’s inferred ability, fund size factor, and sensitivity of gross alpha to 

ability are larger. 

b. If this fund’s size is sufficiently large (small) relative to other funds’ due to the 

manager’s sufficiently large (small) inferred ability, then the HHI is concave in this 

manager’s inferred ability. Over the next infinitesimal period, this concavity has a 

negative impact on the change in the HHI. If all managers’ inferred abilities are 

sufficiently close to each other’s such that funds’ sizes are sufficiently close, then the 

HHI is convex in this manager’s inferred ability. Then, over the next infinitesimal 

period, this convexity has a positive impact on the change in the HHI. If the HHI is 

concave (convex) in this manager’s inferred ability, then both a higher fund size factor 

and a higher sensitivity of gross alpha to ability make the concavity (convexity) effect 

stronger. □ 
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2.5 Constant Abilities and the HHI 

Consider a special case in which managers’ abilities are unobservable constants, such 

that 𝐚𝟎, 𝐚𝟏, 𝐛𝟏, and 𝐛𝟐 are 𝑛 × 𝑛 zero matrices. We have 

 𝐝𝐦𝐭 = 𝛔𝐦(𝛄𝐭)𝐝𝐖ഥ𝐭, (30) 

 𝛔𝐦(𝛄𝐭) = (𝐀𝛄𝐭)′𝐁ି𝟏, (31) 

 𝛄𝐭 = [𝐈 + 𝛄𝟎𝐀𝐁ି𝟐𝐀𝑡]ିଵ𝛄𝟎, (32) 

where 𝐈 is an 𝑛 × 𝑛 identity matrix. Theorem 12.8 of Liptser and Shiryaev (2001b) provides 

the proof of the above results. These results show that for fund 𝑖, 𝑖 = 1, … ,𝑛, 𝛾௜,௧ = ఊ೔,బ஻೔మ஻೔మା஺೔మఊ೔,బ௧ 
decreases over time monotonically, so the sensitivity of inferred ability to innovation shocks, 𝜎௜,௠൫𝛾௜,௧൯ ≜ ൫𝐴௜𝛾௜,௧൯/𝐵௜, also decreases over time monotonically. As 𝑡 → ∞, 𝛾௜,௧ converges 

to zero. Consequently, 𝜎௜,௠൫𝛾௜,௧൯ converges to zero, thus 𝑑𝑚௜,௧ = 𝜎௜,௠൫𝛾௜,௧൯𝑑𝑊ഥ௜,௧ becomes 

zero. Then, by Equation (25), 𝑑𝐻𝐻𝐼௧∗ is zero. This is the static state of this constant-ability 

framework. 

The intuition is that as managers’ abilities are unobservable constants, over time the 

estimation precisions improve monotonically such that the inferred abilities are less and less 

sensitive to the future observations of fund gross alphas. As time goes to infinity, eventually, 

people know the managers’ abilities and do not change their estimates. In this case, investors 

will not change their investments flows to funds anymore (i.e., fund sizes stay unchanged), 

making the HHI stay unchanged. 

The following proposition summarizes the above results. 

Proposition CA. If managers’ unobservable abilities are constant and their inferred abilities 

are higher than the survival levels, then, over time, the estimation precision of inferred abilities 

monotonically improves and the sensitivity of inferred abilities to innovation shocks decreases 

monotonically. As time goes to infinity, AFFMI reaches a static state where the managers’ 

inferred abilities do not change, inducing equilibrium fund sizes to stay unchanged and the HHI 

unchanged. □ 
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2.6 Mean-Variance Risk-Averse Investors and the HHI 

To study the effect of investors’ risk aversion on the HHI, we assume that investors are 

mean-variance risk averse who maximize their portfolios’ instantaneous Sharpe ratios. These 

investors’ optimal portfolios are growth optimal and are the same as those of investors with 

Bernoulli logarithmic preferences, who maximize expected utility.30 This setting is also similar 

to the one in Pastor and Stambaugh (2012), Feldman, Saxena, and Xu (2020, 2021), and 

Feldman and Xu (2021). 

As risk-averse investors trade off risk and return, we need to redefine our model. First, 

we cannot normalize the passive benchmark portfolio return to be zero, as the level of this 

return is relevant.31 Here, we define the share price of the passive benchmark portfolio at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇, as 𝜂௧ . This, in turn, includes redefinitions of net and gross alphas. We assume 

that the passive benchmark portfolio return 𝑑𝜂௧/𝜂௧ follows 

 𝑑𝜂௧𝜂௧ = 𝜇௣𝑑𝑡 + 𝜎௣𝑑𝑊௣,௧,. (33) 

where 𝜇௣ and 𝜎௣ are positive known constants and 𝑊௣,௧ is a Wiener Process. 

Second, for 𝑖 = 1, … ,𝑛 , we still define 𝑑𝜉௜,௧/𝜉௜,௧ , as the fund gross alphas, which 

follow the process defined in Equations (1) and (2), and define 𝑑𝑆௜,௧/𝑆௜,௧ as the fund net alphas. 

As the active funds have beta loading of one on the passive benchmark portfolio, the fund gross 

return is 𝑑𝜉௜,௧/𝜉௜,௧ +  𝑑𝜂௧/𝜂௧ and the fund net return is 𝑑𝑆௜,௧/𝑆௜,௧ +  𝑑𝜂௧/𝜂௧. Also, we assume 

that the risk source of the benchmark return, 𝑊௣,௧, is independent of that of gross alphas, so 

 𝑑𝑊௣,௧𝑑𝑊ഥ௜,௧ = 0,  ∀𝑡, 𝑖 = 1, … ,𝑛. (34) 

Third, to simplify our discussion, we normalize the risk-free rate to zero.32 All other settings 

are the same as before. 

An investor invests in 𝑛  active funds and the passive benchmark to maximize the 

portfolio’s instantaneous Sharpe ratio: 

 
30 See the discussions of mean-variance risk-averse investors in Feldman and Xu (2021). 
31 As risk-averse investors’ preferences are defined over their whole portfolios, they do not form their decision 
based on a marginal analysis of the active funds’ risk alone. [See, for example, Equation (43), below, which 
collapses if the passive benchmark return is normalized to zero.] 
32 Alternatively, we can regard 𝑑𝜂௧/𝜂௧ as the passive benchmark portfolio return in excess of the risk-free rate. 
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 max௪೟ E ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ටVar ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ (35) 

subject to 

 𝐯𝐭′𝟏 = 1 (36) 

 0 ≤ 𝑣௜,௧ ≤ 1,  ∀ 𝑖 = 1, … , 𝑛 + 1, (37) 

where 𝐯𝐭 is the (𝑛 + 1) × 1 portfolio weight vector, with the 𝑖th element 𝑣௜,௧ as the weight 

allocated to the 𝑖th fund 𝑖 = 1, … ,𝑛, and the last element 𝑣௡ାଵ,௧ as the weight allocated to 

the passive benchmark portfolio. Condition (37) is to prevent short selling of active funds or 

the passive benchmark portfolio. Also, 𝑝௧  is the portfolio’s value, and 𝑑𝑝௧/𝑝௧  is the 

investor’s instantaneous portfolio return. We define 𝐑𝐭 as the (𝑛 + 1) × 1 return vector of 

these 𝑛 + 1 assets, with the 𝑖th element 𝑖 = 1, … ,𝑛 

 𝑅௜,௧ = 𝑑𝑆௜,௧𝑆௜,௧ + 𝑑𝜂௧𝜂௧  

= ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ + 𝜇௣ቇ𝑑𝑡 + 𝑞௜,௧௔𝑞௜,௧ 𝐵௜𝑑𝑊ഥ௜,௧ + 𝜎௣𝑑𝑊௣,௧ (38) 

and 

 𝑅௡ାଵ,௧ = 𝑑𝜂௧𝜂௧ . (39) 

Then, the investor’s portfolio return is 

 𝑑𝑝௧𝑝௧ = 𝐯𝐭′𝐑𝐭. (40) 

Solving the investor’s problem, we have the optimal weight allocations 𝐯𝐭∗ . As 

investors face the same risk-return tradeoff and have the same objective function, they all make 

the same optimal decision of 𝐯𝐭∗. We define the part of the total wealth of all investors that is 

allocated to financial assets (i.e., allocated to the active fund and the passive benchmark 

portfolio) as 𝑉 , 𝑉 ∈ (0, +∞) , 0 ≤ 𝑡 ≤ 𝑇 . To simplify our analyses and focus on how 

managers’ heterogeneity affects the dynamics of the HHI, we assume that 𝑉 is constant and 

exogenous to both investors and managers.33 Then, the amount of wealth allocated to fund 𝑖, 
 

33 In reality, this wealth not only depends on the returns from financial assets, but also depends on production 
activities, research and development expenditures, consumptions, taxes, and many other aspects of the economy 
that we do not model here. Also, it can change over time and its dynamics can affect the dynamics of the HHI. To 
simplify our model, we do not introduce these complexities of this wealth. 



25 
 

i.e., fund 𝑖’s size, is 𝑞௜,௧∗ = 𝑣௜,௧∗ 𝑉, 𝑖 = 1, … , 𝑛. 

As in the risk-neutral case, we can write the fund manager’s profit as a function of 𝑞௜,௧௔ , 

i.e., 𝑔௜൫𝑞௜,௧௔ ൯, where 𝑔௜ is some (smooth, increasing, concave) function. Then, manager 𝑖’s 

problem is 

 max௤೔,೟ೌ 𝑓௜𝑞௜,௧ = max௤೔,೟ೌ 𝑔௜൫𝑞௜,௧௔ ൯ (41) 

subject to 

 0 ≤ 𝑞௜,௧௔ ≤ 𝑞௜,௧ ,  ∀ 𝑖 = 1, … ,𝑛. (42) 

By solving the investors’ and managers’ problems,34 we obtain the equilibrium fund size: 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (43) 

We define the size factor of fund 𝑖 where investors are mean-variance risk-averse, as 

 𝑋௜ோ஺ ≜ 𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯ = 14𝑓௜𝑐௜ + 4𝑓௜𝐵௜ଶ𝜇௣𝑉𝜎௣ଶ . (44) 

Similar to the results of 𝑋௜, a higher decreasing returns to scale coefficient 𝑐௜ and a higher 

management fee 𝑓௜, both decrease the size factor 𝑋௜ோ஺. Additionally, higher 𝐵௜ଶ and 𝜇௣ both 

decrease 𝑋௜ோ஺, and higher 𝑉 and 𝜎௣ଶ both increase 𝑋௜ோ஺. The intuition is that, holding other 

parameters unchanged, mean-variance risk-averse investors invest more (less) in active fund 𝑖 
and less (more) in the passive benchmark, if the risk of the passive benchmark’s return 𝜎௣ଶ (the 

risk of fund 𝑖’s gross alpha 𝐵௜ଶ) is higher. Also, investors invest more in active funds if they 

have more wealth 𝑉 to invest, and invest more in the passive benchmark and less in active 

funds, if the passive benchmark’s mean return 𝜇௣ is higher. Further, we can see that, holding 

other parameters unchanged, 𝑋௜ோ஺  is smaller than 𝑋௜ ; i.e., comparing to AFMI with risk-

neutral investors, AFMI with mean-variance risk-averse investors has smaller equilibrium fund 

sizes. That is because investors’ risk considerations reduce their investment to risky active 

funds. Using this new definition of fund 𝑖’s size factor, we have 
 

34 We assume that managers choose 𝑓௜ such that the constraint 0 ≤ 𝑞௜,௧௔ ∗ ≤ 𝑞௜,௧∗ , is satisfied for 𝑖 = 1, … ,𝑛, so 
this constraint does not affect the managers’ optimization processes. Also, we assume that 𝜇௣ is sufficiently large 
or 𝜎௣ଶ is sufficiently small so that 0 ≤ 𝑣௜,௧∗ ≤ 1, is satisfied for 𝑖 = 1, … ,𝑛 + 1, so this constraint does not affect 
the investors’ optimization processes. See the proof in the appendix. 
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 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑋௜ோ஺. (45) 

Then, substituting 𝑞௜,௧∗  into the formula of 𝐻𝐻𝐼௧∗, we have 

 𝐻𝐻𝐼௧∗ = 𝐗𝐑𝐀′𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗𝐑𝐀[𝐗𝐑𝐀′𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]𝟐 = ∑ 𝑋௜ோ஺ଶ൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ 𝑋௜ோ஺൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ (46) 

where 𝐗𝐑𝐀 is a 𝑛 × 1 vector with the 𝑖th element as 𝑋௜ோ஺. We can see that the form of 𝐻𝐻𝐼௧∗ 
in (46) is the same as the one in (24) of the risk-neutral case. The only difference is that here 

we use 𝐗𝐑𝐀 instead of 𝐗 as the size factors. Thus, the relation of the dynamics of 𝐻𝐻𝐼௧∗ and 

managers’ inferred abilities in Proposition RN still holds. The intuition is that investors’ risk 

considerations decrease the equilibrium fund sizes, but 𝐻𝐻𝐼௧∗ depends on relative fund sizes, 

and the way to compare funds’ sizes does not depend on investors’ risk considerations. Thus, 

the dynamics of 𝐻𝐻𝐼௧∗ are related to managers’ relative inferred abilities, similar to the risk-

neutral case. 

The following proposition summarizes the results in this section. 

Proposition RA. The results of Proposition RN hold if investors are mean-variance risk-averse, 

except that, all else equal, equilibrium fund sizes are smaller, and funds’ size factors depend on 

more parameters. In particular, the size factors not only decrease with the decreasing returns to 

scale coefficients and management fees, but also increase with the total wealth and the passive 

benchmark portfolio’s risks and decrease with variances of active funds’ gross alphas and the 

passive benchmark portfolio’s mean return. 

Proof. See the Appendix. □ 

2.7 Funds’ Entrances and Exits and the HHI 

Besides the dynamics of fund managers’ relative abilities, a fund’s entrance and exit 

could affect the dynamics of AFMI concentration. Although we do not analyze funds’ entrances 

and exits explicitly, we show in this section that our framework is compatible with the effects 

of them, if we allow the total number of funds to change over time, i.e., 𝑛 = 𝑛௧, and require 

funds to exit the market if their managers’ inferred abilities reduce to zero, i.e., the survival 

ability level 𝑚௜,௧ = 0 , 𝑖 = 1, … ,𝑛௧ . Notice that in equilibrium, funds with positive (zero) 

inferred abilities earn positive (zero) profits, as implied by the equilibrium fund sizes in 
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Equation (18) in the risk-neutral case and those in Equation (43) in the mean-variance risk-

averse case. When 𝑚௜,௧ = 0, 𝑖 = 1, … ,𝑛௧, managers with positive inferred abilities optimally 

stay in the market to earn positive profits. On the other hand, as managers cannot short sell 

investors’ wealth, managers with negative inferred abilities optimally choose to put zero assets 

under active management to avoid losses, thus exit the market. Therefore, the setting of 𝑚௜,௧ =0 , 𝑖 = 1, … ,𝑛௧  is consistent with profit-maximizing managers, and these survival ability 

levels can be regarded as those endogenously chosen by fund managers. 

To see how our framework is compatible with the effects of funds’ entrances and exits, 

notice that equilibrium fund sizes 𝑞௜,௧∗  , are functions of managers’ inferred abilities 𝑚௜,௧ , 
[Equations (18) in the risk-neutral case and (43) in the mean-variance risk-averse case]. As the 

value of 𝑚௜,௧ changes continuously, the value of.𝑞௜,௧∗  also changes continuously. When 𝑚௜,௧ 
decreases to zero, 𝑞௜,௧∗  (and fund 𝑖’s market share) decreases to zero, such that when the fund 

exits the market, the exit does not cause a jump in 𝐻𝐻𝐼௧∗. On the other hand, a potential entrant 

can be regarded as a fund with negative inferred ability. When its inferred ability 𝑚௜,௧ 
increases to zero, it enters the market with an equilibrium fund size 𝑞௜,௧∗  equal to zero. After 

that, if 𝑚௜,௧ increases, then 𝑞௜,௧∗  increases. As the changes in 𝑚௜,௧ and 𝑞௜,௧∗  are continuous, 

the entrance does not cause a jump in 𝐻𝐻𝐼௧∗ either. Then, in these two cases, 𝑑𝐻𝐻𝐼௧∗ can still 

be expressed by Equation (25), and the results from Section 2.3 to Section 2.5 are still valid. In 

other words, funds’ entrances and exits do not affect 𝑑𝐻𝐻𝐼௧∗ immediately, but change the set 

of funds in AFMI and affect 𝑑𝐻𝐻𝐼௧∗ after that. 

However, if 𝑚௜,௧ > 0, 𝑖 = 1, … ,𝑛௧, a fund’s exit or entrance creates a jump in 𝐻𝐻𝐼௧∗, 
and we need to incorporate this jump effect when analyzing 𝑑𝐻𝐻𝐼௧∗. The reason is that when 

fund 𝑖 exits the market with 𝑚௜,௧ decreasing to 𝑚௜,௧, its equilibrium fund size 𝑞௜,௧∗  jumps 

from a value larger than (but not close to) zero, to zero, creating a jump in 𝐻𝐻𝐼௧∗. On the other 

hand, when fund 𝑖 enters the market with 𝑚௜,௧ increasing to 𝑚௜,௧, its equilibrium fund size 𝑞௜,௧∗  jumps from zero to a value larger than (but not close to) zero, creating a jump in 𝐻𝐻𝐼௧∗, 
too. In these two cases, 𝑑𝐻𝐻𝐼௧∗ cannot be expressed by Equation (25) because the jump effects 

should be added. 

In reality, we observe that investors keep withdrawing investments from badly 

performing funds, so when a fund with a history of bad performance eventually exits AFMI, 
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its size is negligible compared to AFMI’s size. Also, when a new fund enters market, it starts 

with a size that is trivial compared to AFMI’s size, and if it performs well later, it grows. When 

these exits and entrances happen in the real world, we do not observe jumps in AFMI 

concentration levels. Therefore, our model can sufficiently explain the dynamics of AFMI 

concentration when funds exit and enter. 

3 Simulation of AFMI Concentration 

In our following numerical analyses, we consider a two-fund AFMI, i.e., 𝑛 = 2, and 

assume that investors are risk neutral. The numerical analyses with mean-variance risk-averse 

investors are similar, and we omit them for brevity. 

We first illustrate how the HHI changes with different values of relative inferred 

manager abilities, fund size factors, and sensitivity of gross alphas to abilities. We set 𝑚ଶ,௧ =1 , 𝐴ଶ = 1 , and 𝑋ଶ = 100 . We set the range of 𝑚ଵ,௧  as [0, 4] . As 𝑚ଶ,௧ = 1 , the value of 𝑚ଵ,௧ can be regarded as manager 1’s inferred ability relative to manager 2’s. We simulate the 

values of the HHI for three cases, 

• Case One:  𝐴ଵ = 𝐴ଶ = 1 and 𝑋ଵ = 𝑋ଶ = 100; 

• Case Two:  𝐴ଵ = 𝐴ଶ = 1 and 𝑋ଵ = 2𝑋ଶ = 200; 

• Case Three:  𝐴ଵ = 2𝐴ଶ = 2 and 𝑋ଵ = 𝑋ଶ = 100. 

Figure 1 illustrates the results. In Case One, the two funds have the same size factor 

and sensitivity of gross alpha to ability. Where 𝑚ଵ,௧  is smaller (larger) than one, fund 1’s 

equilibrium size is smaller (larger) than fund 2’s, and the AFMI is concentrated at fund 2 (fund 

1). Then, a higher 𝑚ଵ,௧ increases fund 1’s size and makes the AFMI less (more) concentrated. 

The lowest level of 𝐻𝐻𝐼௧∗ is 0.5, achieved where 𝑚ଵ,௧ = 1, i.e., the two managers have the 

same inferred ability thus the same equilibrium size. The highest 𝐻𝐻𝐼௧∗ is 1, achieved where 𝑚ଵ,௧ = 0 and 𝑚ଵ,௧ → ∞, i.e., either manager 2 or manager 1 has infinite relative ability such 

that AFMI becomes monopolistic. Moreover, in the figure, we can see that where 𝑚ଵ,௧ is close 

to zero (close to four), 𝐻𝐻𝐼௧∗ is concave in 𝑚ଵ,௧, as it is more difficult to increase 𝐻𝐻𝐼௧∗ by 

further decreasing (increasing) 𝑚ଵ,௧. Also, where 𝑚ଵ,௧ is close to one, 𝐻𝐻𝐼௧∗ is convex in 𝑚ଵ,௧, as it is easier to increase 𝐻𝐻𝐼௧∗ if 𝑚ଵ,௧ has a larger deviation from one and makes fund 

1’s size deviate farther from fund 2’s. 
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In Case Two, fund 1 has a larger size factor but the same sensitivity of gross alpha to 

ability. Comparing Case Two with Case One, we can see that the graph of Case Two shrinks to 

the left. In particular, where 𝐻𝐻𝐼௧∗ decreases (increases) with 𝑚ଵ,௧, at the same 𝑚ଵ,௧ level, 𝐻𝐻𝐼௧∗ has a lower (higher) value because the larger size factor enhances the negative (positive) 

impact of a higher 𝑚ଵ,௧ on 𝐻𝐻𝐼௧∗. Also, in Case Two, where 𝐻𝐻𝐼௧∗ is concave (convex) in 𝑚ଵ,௧ , 𝐻𝐻𝐼௧∗  is more sensitive with 𝑚ଵ,௧  because the larger size factor also intensifies the 

concavity (convexity). 

In Case Three, fund 1 has a larger sensitivity of gross alpha to ability but the same size 

factor. Because a higher sensitivity of gross alpha to ability has a stronger effect on equilibrium 

fund size than the size factor [by Equation (20), 𝐴௜ has a power of two whereas 𝑋௜ has a 

power of one], the graph of Case Three shrinks more to the left and has larger concavity and 

convexity in the corresponding intervals, compared with Case Two. 

Next, we simulate these two funds’ inferred abilities, 𝑚ଵ,௧ and 𝑚ଶ,௧, and then 𝐻𝐻𝐼௧∗. 
We discretize our continuous-time processes into discrete-time processes, setting 𝑑𝑡 = Δ𝑡 to 

be one month and 𝑑𝑊ഥଵ,௧ = Δ𝑊ഥଵ,௧  and 𝑑𝑊ഥଶ,௧ = Δ𝑊ഥଶ,௧ , to follow a normal distribution of 

mean zero and variance Δ𝑡. We set some of the two funds’ parameter values the same and set 

them similar to those of Feldman and Xu (2021):  for 𝑖 = 1, 2, 𝑓௜ = 0.094%, 𝐵௜ = 5.24%, 𝑚௜,଴ = 1.12%, and 𝛾௜,଴ = 0.0006. Additionally, we set 𝑐௜ = 0.0002 and 𝐴௜ = 1, 𝑖 = 1, 2. 

We conduct the simulation for two frameworks, one with dynamic abilities and the other with 

constant abilities. In particular, the parameters specific to these two frameworks are set as 

follows. 

• Dynamic Abilities:  for 𝑖 = 1, 2 , 𝑎଴,௜ = 0.01 , 𝑎ଵ,௜ = −0.02 , 𝑏ଵ,௜ = 0.02 , and 𝑏ଶ,௜ = 0.01. 

• Constant Abilities:  for 𝑖 = 1, 2, 𝑎଴,௜ = 0, 𝑎ଵ,௜ = 0, 𝑏ଵ,௜ = 0, and 𝑏ଶ,௜ = 0. 

We simulate Δ𝑊ഥଵ,௧ and Δ𝑊ഥଶ,௧ as two independent series of increments of Brownian motions 

and use the same set of simulated Δ𝑊ഥଵ,௧ and Δ𝑊ഥଶ,௧ values for both cases. 

We simulate the results for 400 months. Figure 2 plots the simulation results. In both 

frameworks, we can see that, when 𝑚ଵ,௧  is farther away from (closer to) 𝑚ଶ,௧ , 𝐻𝐻𝐼௧∗ 
becomes larger (smaller). Also, with constant abilities, the two managers’ inferred abilities 
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change little after 300 months. This is because the estimation precisions are very large after 

300 months, so the inferred abilities are not sensitive to innovation shocks. Consequently, 

equilibrium fund sizes change little after 300 months, making 𝐻𝐻𝐼௧∗ stable after 300 months 

in the interval from 0.90 to 0.92. On the other hand, with dynamic abilities, the two managers’ 

inferred abilities fluctuate greatly over time, even after 300 months, because the estimation 

precisions are low, so the inferred abilities are still sensitive to innovation shocks. Consequently, 

equilibrium fund sizes fluctuate greatly after 300 months, making 𝐻𝐻𝐼௧∗  volatile after 300 

months in the interval from 0.50 to 0.75. 

4 AFMI Concentration and Fund Net Alpha Production 

If we allow AFMI concentration to affect fund net alpha production as Feldman, Saxena, 

and Xu (2020) (hereafter, FSX) does, then our model generates results of how equilibrium 

AFMI size and net alphas change with AFMI concentration, thus providing the key insights of 

the FSX model. In addition to FSX’s fixed-point equilibrium results, we also generate results 

of the dynamics of AFMI. 

4.1 Comparison of Our Model and the FSX Model 

Notice that some of our models’ settings are consistent with those of FSX. In particular, 

FSX assumes that when investors are risk-neutral, as long as they have sufficient wealth, they 

invest until expected fund net alphas drops to zero due to decreasing returns to scale, and when 

investors are mean-variance risk-averse, they maximize their portfolio instantaneous Sharpe 

ratios. In our model, investors’ problems are similar. We also assume that when investors are 

risk-neutral, they invest until expected fund net alphas (conditional on current information) 

drops to zero, and when investors are mean-variance risk-averse, they maximize their portfolio 

Sharpe ratios instantaneously. Also, in FSX, fund managers maximize expected fund net alphas 

in order to survive, and under the settings of FSX, maximizing managers’ expected fund net 

alpha is equivalent to maximizing managers’ profits. In our model, our fund managers’ problem 

is to maximize fund profits, similar to those in FSX. 

However, as FSX is a one-period model, it provides results of AFMI concentration only 

at the fixed-point equilibrium. Our continuous-time model generates results regarding the 
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dynamics of AFMI concentration and offers new insights to this area. 

4.2 Exogenous AFMI Concentration, Equilibrium AFMI Size, and Performance 

We can degenerate our model to provide the key insights of the FSX model where AFMI 

concentration is exogenous. We set the following parameters the same across funds to simplify 

our discussions:  𝐵௜ = 𝐵 , 𝑐௜ = 𝑐 , 𝑓௜ = 𝑓 , 𝑖 = 1, … ,𝑛 . Also, we assume that investors are 

mean-variance risk-averse. In addition, similar to the baseline model of FSX, we assume a 

continuum of AFMI concentration levels, denoted by 𝐻 , which is exogenous and affects 

production and cost of managers’ activities. 

FSX assumes that managers spend costly efforts in producing fund returns. A higher 

AFMI concentration increases the productiveness of their efforts as it implies more unexplored 

investment opportunities and simultaneously affects the costs of managerial efforts as it affects 

managers’ salaries. Then, in the FSX model, the tradeoff of a higher AFMI concentration affects 

the equilibrium AFMI size and expected net alphas.35 Our model does not explicitly define 

managerial efforts but assumes that managers choose the amount of assets to be under active 

management, 𝑞௜,௧௔ . Then, we can regard 𝑞௜,௧௔  as a variable representing managerial effort. To 

model how AFMI concentration affects the effectiveness of a higher 𝑞௜,௧௔  (notice that a higher 𝑞௜,௧௔  induces higher returns and higher costs), we assume that funds’ decreasing returns to scale 

coefficient is a function of AFMI concentration, i.e., 𝑐 = 𝑐(𝐻). This is because a higher 𝐻 

implies more unexplored investment opportunities that mitigate the decreasing returns to scale. 

In other words, if a unit of 𝑞௜,௧௔  can produce more returns, then the “net costs” of a unit of 𝑞௜,௧௔  

is lower, implying a lower level of decreasing returns to scale 𝑐(𝐻). Also, if 𝐻 is higher, 

managers’ salaries on per unit of 𝑞௜,௧௔  can be higher, so the decreasing returns to scale level 𝑐(𝐻) is also higher. Then, whether 𝑐(𝐻) increases with 𝐻 depends on this tradeoff. 

Based on these settings and performing a similar analysis as shown before, we find the 

equilibrium AFMI size and (conditional) expected net alphas: 

 𝐼𝑆௧∗ ≜෍𝑞௜,௧∗௡
௜ୀଵ = 𝑉𝜎௣ଶ4𝑓ൣ𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൧෍൫𝐴௜𝑚௜,௧൯ଶ௡

௜ୀଵ  (47) 

 
35 See the discussions of direct benefits and Proposition RA3 in FSX Section 2. 
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 E ቈ𝑑𝑆௜,௧𝑆௜,௧ ቤ ℱ௧𝛏቉ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ 𝑑𝑡. (48) 

With simple mathematics, we can show that both 𝐼𝑆௧∗ and E ൤ௗௌ೔,೟ௌ೔,೟ ฬ ℱ௧𝛏൨ increase (decrease) 

with 𝐻 if and only if 𝑐ᇱ(𝐻) ≜ ௗ௖(ு)ௗு < 0 (𝑐ᇱ(𝐻) > 0). Also, 𝐼𝑆௧∗ is convex (concave) in 𝐻 

if and only if E ൤ௗௌ೔,೟ௌ೔,೟ ฬ ℱ௧𝛏൨ is convex (concave) in 𝐻. 

The intuition is that, if a higher AFMI concentration decreases the decreasing returns 

to scale level by inducing more productivity than costs of active management, it induces a 

higher expected net alpha for each fund. The higher expected net alpha attracts investors to 

invest more in active funds, increasing the fund sizes and then the AFMI size. When risk-averse 

investors observe higher expected fund net alphas, they invest more in active funds, but as 

investing more in active funds increases their portfolios risk, they do not invest “too much 

more” in active funds. Thus, although larger fund sizes imply larger costs due to decreasing 

returns to scale, this effect is mitigated by investors’ risk aversion, such that the effect of 

decreasing returns to scale does not overwhelm the increment in expected net alphas in 

equilibrium. Then, in equilibrium, AFMI size and expected net alphas both increase with AFMI 

concentration. Also, AFMI concentration affects the rates of changes of equilibrium AFMI size 

and expected net alphas in a similar way, so equilibrium AFMI size and expected net alphas 

are both convex or both concave in AFMI concentration. 

The theoretical results above are the same as those of Proposition RA3 in FSX, so our 

model provides the key insights of FSX. The following proposition summarizes these results. 

Proposition FSX. In equilibrium, higher concentration induces larger (smaller) equilibrium 

AFMI size and higher (lower) equilibrium expected net alphas if and only if higher 

concentration induces a larger (smaller) impact on productivity of active management than on 

the costs of active management. Then, AFMI size and expected net alphas either both increase 

with AFMI concentration, or both decrease with AFMI concentration. In addition, AFMI size 

and expected net alphas are either both convex in AFMI concentration or both concave in AFMI 

concentration. 

Proof. See the Appendix. □ 
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4.3 Endogenous AFMI Concentration, Equilibrium AFMI Size, and Performance 

Next, similar to Section 2.4 of FSX, we endogenize the AFMI concentration and 

calculate it as 𝐻𝐻𝐼 , the sum of funds’ market shares squared. We replace 𝐻  in the above 

analysis by 𝐻𝐻𝐼. By Equation (23), the equilibrium AFMI HHI is derived as 

 𝐻𝐻𝐼௧∗ = 𝐗𝐑𝐀′(𝐻𝐻𝐼௧∗)𝐀𝟒𝐈𝟒(𝐦𝐭)𝐗𝐑𝐀(𝐻𝐻𝐼௧∗)[𝐗𝐑𝐀′(𝐻𝐻𝐼௧∗)𝐀𝟐𝐈𝟐(𝐦𝐭)𝟏]𝟐  

= ∑ 𝑋௜ோ஺ଶ(𝐻𝐻𝐼௧∗)൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ 𝑋௜ோ஺(𝐻𝐻𝐼௧∗)൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ = ∑ ൫𝐴௜𝑚௜,௧൯ସ௡௜ୀଵቂ∑ ൫𝐴௜𝑚௜,௧൯ଶ௡௜ୀଵ ቃଶ 

(49) 

where 

 𝑋௜ோ஺(𝐻𝐻𝐼௧∗) = 𝑉𝜎௣ଶ4𝑓ൣ𝐵ଶ𝜇௣ + 𝑐(𝐻𝐻𝐼௧∗)𝑉𝜎௣ଶ൧. (50) 

As we assume 𝐵௜ = 𝐵, 𝑐௜ = 𝑐(𝐻𝐻𝐼௧∗), 𝑓௜ = 𝑓, 𝑖 = 1, … , 𝑛, the size factors 𝑋௜ோ஺(𝐻𝐻𝐼௧∗) are 

the same across funds, so they cancel out with each other in the numerator and denominator of 

Equation (49). Therefore, the dynamics of 𝐻𝐻𝐼௧∗ depends on the changes in managers’ relative 

inferred abilities. This result is similar to those in our Propositions RN and RA. 

Substituting 𝐻𝐻𝐼௧∗ into equilibrium AFMI size and fund net alphas, we have 

 𝐼𝑆௧∗ = 𝑉𝜎௣ଶ4𝑓ൣ𝐵ଶ𝜇௣ + 𝑐(𝐻𝐻𝐼௧∗)𝑉𝜎௣ଶ൧෍൫𝐴௜𝑚௜,௧൯ଶ௡
௜ୀଵ  (51) 

 𝑑𝑆௜,௧𝑆௜,௧ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐(𝐻𝐻𝐼௧∗)𝑉𝜎௣ଶ 𝑑𝑡 + 2𝑓𝐵𝐴௜𝑚௜,௧ 𝑑𝑊ഥ௜,௧. (52) 

Then, we can see that a positive shock in a fund’s return, 𝑑𝑊ഥ௜,௧, which induces a positive 

change in this manager’s inferred ability, 𝑑𝑚௜,௧, has direct positive effects on the fund’s net 

alpha and the AFMI size. This is because a positive shock in a fund’s return implies a larger 

fund net alpha to investors, inducing more investments to this fund and, consequently, a larger 

AFMI size. It also has indirect effects on the fund’s net alpha and the AFMI size through 𝐻𝐻𝐼௧∗. 
The change in this manager’s inferred ability increases or decreases 𝐻𝐻𝐼௧∗ , depending on 

parameter values. Then the change in 𝐻𝐻𝐼௧∗ increases (decreases) both the fund’s net alpha 

and the AFMI size, if the change in 𝐻𝐻𝐼௧∗ induces larger (smaller) productivities of active 

management than costs of active management, i.e., 𝑐(𝐻𝐻𝐼௧∗) is smaller (larger). These results 
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of the dynamics of the AFMI performance and size are new compared to those of FSX, which 

studies one-period fixed-point equilibria. 

If we want to study how the dynamics of 𝐻𝐻𝐼௧∗ affect the dynamics of other AFMI 

variables in equilibrium, we can extend our model in a way similar to the one shown above to 

study the corresponding relations or effects. We leave these extensions for future research. 

5 Empirical AFMI Concentration and Related Empirical Literature 

In this section, we illustrate the empirical U.S. AFMI concentration and show that some 

of its patterns can be explained by our theories. We also show that some stylized findings in 

the empirical AFMI literature can be explained by our model and offer some directions of future 

research in AFMI concentration. 

5.1 Data 

We collect our active fund data from the survivor-bias-free mutual fund database of the 

Center for Research in Security Prices (CRSP). Our sample period is from January 1990 to 

December 2020, and monthly data is used. We exclude index funds, variable annuity funds, 

and exchange-traded funds (ETFs) then choose U.S. domestic equity-only mutual funds by 

using the Lipper fund classification.36 We use the MFLINKS database to aggregate fund share 

class-level information to fund-level information. In particular, we calculate funds’ total net 

assets under management by summing up its share classes’ net assets under management. Fund 

family is identified by the management company code.37 We calculate fund families’ net assets 

under management by summing up member funds’ net assets under management. Then, we 

calculate the following: funds’ (fund families’) market shares based on their net assets under 

management, the HHI at fund level (fund family level), and the sum of market shares of the 

biggest five funds (fund families), i.e., the 5FI at fund level (fund family level). The equity 

 
36 We use funds in the following Lipper classes: Large-Cap Core, Large-Cap Growth, Large-Cap Value, Mid-Cap 
Core, Mid-Cap Growth, Mid-Cap Value, Small-Cap Core, Small-Cap Growth, Small-Cap Value, Multi-Cap Core, 
Multi-Cap Growth, and Multi-Cap Value. If a fund has a missing Lipper class in some months, we use its Lipper 
class in the previous months; if there is no information on a Lipper class in the previous months, we use its Lipper 
class in the later months. 
37 If a fund has a missing management company code in some months, we use the fund’s management company 
code in the previous months; if there is no information of management company code in the previous months, we 
use the fund’s management company code in the later months. 
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fund filter and data processing are similar to Brown and Wu (2016), Feldman, Saxena, and Xu 

(2020), and Feldman and Xu (2021). 

5.2 The U.S. AFMI Concentration 

Table 1 reports the summary statistics. We can see that there is a big variation in funds’ 

sizes (the net asset under management) with a standard deviation equal to 4.2 billion dollars. 

The fund families’ sizes have an even bigger variation, with a standard deviation equal to 72.4 

billion dollars. A few fund families only have one equity fund, and others have multiple family 

member funds. The number of funds and number of fund families tend to be symmetric, 

whereas the HHIs at fund level and at fund family level tend to skew to the right. 

Figure 3 plots the HHIs and the 5FIs at the fund and fund family levels, and the number 

of funds and fund families during our sample period. The two recessions, from March 2001 to 

November 2001, and from December 2007 to June 2009, are marked in gray. First, notice that 

the HHIs at fund level and at fund family level both fluctuate a lot, and do not converge to a 

particular level. This finding is consistent with the framework with dynamic manager abilities 

but not consistent with the one with constant manager abilities. Therefore, the finding here is 

consistent with those of Feldman and Xu (2021).38 

At both the fund level and fund family level, the 5FI tends to move closely with the 

HHI. If we calculate the correlation, we find that at the fund level (fund family level), the HHI 

and the 5FI have a correlation coefficient of 0.94 (0.89), significant at 1% significance level. 

In other words, a higher 5FI tends to increase the HHI. This is consistent with our theoretical 

prediction in Propositions RN and RA, that the increase in the biggest funds’ inferred manager 

abilities (implied by their larger fund sizes) has a positive impact on the dynamics of the HHI. 

The impact from these biggest funds is larger than those from smaller funds because of these 

funds’ large inferred manager abilities, size factors, and/or sensitivities of gross alpha to ability 

(implied by their large fund sizes). 

At the fund level, the HHI tends to move in the opposite direction with the number of 

funds, and these two variables’ correlation coefficient is −0.85, significant at 1% significance 
 

38 Feldman and Xu (2021) shows that the fund flows’ sensitivities to fund performance are nonmonotonic over 
time, which is consistent with a nonlinear filtering framework of dynamic unobservable managing abilities and 
inconsistent with a framework of constant unobservable managing abilities. 
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level. This implies that more competitors tend to make the market less concentrated. On the 

other hand, at the fund family level, the HHI is insignificantly associated with the number of 

fund families. Also, as we can see above, the HHI is more correlated with the 5FI than with the 

number of competitors. This is consistent with our theoretical framework that the managers’ 

relative inferred abilities are more relevant than the number of rivals in analyzing the HHI. 

Therefore, it is important to study heterogeneous managers where the HHI captures managers’ 

relative inferred abilities, instead of homogeneous managers where the HHI is simply the 

inverse of the number of competitors. 

After the financial crisis from December 2007 to June 2009, the HHIs at the fund level 

and fund family level keep gradually decreasing for a few years. Our model shows that these 

decreasing patterns in HHIs are due to the fact that funds’ and fund families’ inferred abilities 

become more similar with each other. Then, it is interesting to check which policies or 

economic conditions make investors expect that manager abilities are more similar than before. 

Also, in the current few years, the HHIs at fund level and at fund family level both increase. 

Our model shows that the increasing patterns are due to the inferred abilities of big (small) 

funds and big (small) fund families increase (decrease). It is also interesting to analyze the 

factors that change these inferred abilities. 

5.3 Related Empirical Literature 

Wahal and Wand (2011) shows that from late 1990s to 2005, incumbents in the mutual 

fund market that have a high overlap in their portfolio holdings with those of new entrants 

experience lower fund flows and lower alphas. Similarly, Kosowski, Timmermann, Wermers, 

and White (2006) shows that outperforming managers become scarce after 1990 and speculates 

that this might be due to the competition among the large number of new funds that reduces 

the gains from trading. Fama and French (2010) also reports a decline in the persistence of 

alphas after 1992 and speculates that the cause is either diseconomies of scale or the entry of 

hordes of mediocre funds that make it difficult to uncover truly informed managers. 

Our model can explain these phenomena coherently. From Figure 3, we can see that the 

number of funds and fund families keep increasing from 1995 to early 2000s; and in the same 

period, the HHIs at both fund level and fund family level both decrease. The new entrants of 
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funds and fund families in this period hold portfolios similar to the incumbents, as Wahal and 

Wand (2011) concludes, inducing similarity in funds’ inferred abilities. As similarity in funds’ 

inferred abilities leads to similarity in equilibrium fund sizes, the HHI decreases. The decrease 

in the HHI might decrease the productivity of funds’ active management more than the costs 

of active management because when more funds hold similar active portfolios and trade on 

similar assets, it is much more difficult to find investment opportunities to create abnormal 

returns. Thus, the decrease in the HHI induces larger decreasing returns to scale level during 

that period. The higher decreasing returns to scale level consequently induces lower fund sizes 

and fund net alphas, as we discuss previously, consistent with the findings of these empirical 

studies. 

Also, current literature finds that family members can compete or cooperate with each 

other [e.g., Evans, Prado, and Zambrana (2020) and Eisele, Nefedova, Parise, and Peijnenburg 

(2020)]. Figure 3 shows that although the number of funds and the number of fund families 

move closely with each other (the correlation coefficient of their time series is close to 1), the 

HHI at fund level and the HHI at fund family level do not move closely with each other. Their 

correlation coefficient is only 0.17 and significant at 1% significance level. This implies that 

AFMI concentrated at fund level is not necessarily concentrated at fund family level and vice 

versa. Using only the HHI at fund level or the HHI at fund family level might not represent 

AFMI concentration well. To more precisely measure AFMI concentration, as implied by these 

current studies, we might need to regard family members that tend to cooperate (compete) with 

each other as one competitor (separate competitors). 

Other literature shows that mutual funds compete in different dimensions, such as by 

trading assets in specific industries and style markets (defined by e.g., stock’s total 

capitalization and book-to-market-ratio), by selling fund shares in specific retail market 

segments (e.g., direct-sold and broker-sold), and by offering unique products [e.g., Kacperczyk, 

Sialm, and Zheng (2005), Guercio and Reuter (2014), Hoberg, Kumar, and Prabhala (2018), 

and Kostovetsky and Warner (2020)]. Thus, we might need to use new methods to define 

competitors when analyzing the market structure of sub-sectors in AFMI. 
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6 Conclusion 

We introduce continuous-time rational models of dynamics of AFMI equilibrium HHI, 

in which unobservable fund manager abilities are dynamic. In equilibrium, managers with 

higher inferred abilities receive larger fund sizes, so managers’ relative inferred abilities 

determine the HHI. Our model predicts that if a manager’s inferred ability is sufficiently larger 

(smaller) than others’, then an increase in this manager’s inferred ability has a positive 

(negative) impact on the change of the equilibrium HHI. If this fund has a larger inferred ability, 

fund size factor, and sensitivity of gross alpha to ability, then the positive (negative) impact is 

stronger. 

If a manager has sufficiently large (small) inferred ability relative to others’, then the 

HHI is concave in this manager’s inferred ability, and the concavity has a negative impact on 

the change of the equilibrium HHI. Also, if all funds’ inferred abilities are sufficiently close to 

each other’s, then the equilibrium HHI is convex in this manager’s inferred ability, and this 

convexity has a positive impact on the change of the equilibrium HHI. 

We also show a special case in which unobservable fund manager abilities are constant. 

In this case, as time goes to infinity, managers’ inferred ability converges to their true ability 

and does not change, making both equilibrium fund sizes and equilibrium HHI stay unchanged. 

All our results hold whether investors are risk-neutral or mean-variance risk-averse and 

whether there are fund entrances or exits. 

Our framework can explain phenomena of the dynamics of AFMI. In particular, the 

fluctuation of the empirical HHI over time is consistent with our theoretical results, in which 

manager abilities are dynamic and unobservable, but is inconsistent with a model with constant 

unobservable manager abilities. Also, the fact that the empirical HHIs are mainly driven by the 

largest funds and fund families is also consistent with our theoretical prediction. Furthermore, 

the fact that the HHI is more correlated with the large competitors’ market shares than the 

number of competitors shows the importance of modeling heterogeneous managers where the 

HHI captures managers’ relative inferred abilities, instead of homogeneous managers where 

the HHI is simply the inverse of the number of competitors. The stylized findings that new 

entrants who have portfolio holdings similar to incumbents’ decrease funds’ performance and 
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fund flows can also be explained by our model. 

In addition, our paper shows that future research on the dynamics of AFMI 

concentration can focus on factors that affect fund managers’ relative inferred abilities, new 

measures of AFMI concentration, and how the dynamics of AFMI concentration affects other 

aspects of AFMI. Although our paper studies the dynamics of AFMI concentration, our 

framework can be extended to study the dynamics of concentration in other industries in which 

incomplete information exists:  producers’ performance depends on dynamic states that are 

unobservable to customers and producers. 
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Appendix 

This section provides the proofs of the results in the corresponding sections. 

Proof of Results in Section 2.2 

In the managers’ problems shown in Equation (15), to maximize 𝐴௜𝑚௜,௧𝑞௜,௧௔ − 𝑐௜𝑞௜,௧௔ ଶ, 

we apply the first-order condition with respect to 𝑞௜,௧௔ , and find the optimal value 𝑞௜,௧௔ ∗ as 

 𝑞௜,௧௔ ∗ = 𝐴௜𝑚௜,௧2𝑐௜ . (A1) 

The second-order condition −2𝑐௜ < 0  shows that 𝑞௜,௧௔ ∗  induces a maximum. Substituting 

Equation (A1) into Equation (14) and rearranging, we find the fund 𝑖’ optimal fund sizes as 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ4𝑐௜𝑓௜ . (A2) 

Here we assume that manager 𝑖, 𝑖 = 1, … ,𝑛, sets 𝑓௜ sufficiently low such that the constraint 0 ≤ 𝑞௜,௧௔ ∗ ≤ 𝑞௜,௧∗   is automatically satisfied and we do not incorporate this constraint in the 

optimization. 

Q.E.D. 

Proof of Results in Section 2.6 

First, we define the following: 

• mean return vector of the 𝑛 + 1  assets, 𝛍𝐭 , which is an (𝑛 + 1) × 1  vector, with 𝜇௜,௧ = ൬௤೔,೟ೌ௤೔,೟ 𝐴௜𝑚௜,௧ − ௖೔௤೔,೟ೌమ௤೔,೟ − 𝑓௜ + 𝜇௣൰ 𝑑𝑡, 𝑖 = 1, … , 𝑛, and 𝜇௡ାଵ,௧ = 𝜇௣𝑑𝑡; 
• covariance matrix of the 𝑛 + 1 assets, 𝐐𝐭, which is an (𝑛 + 1) × (𝑛 + 1) positive 

definite symmetric matrix, with diagonal elements 𝑄௜௜,௧ = ቈ൬௤೔,೟ೌ௤೔,೟൰ଶ 𝐵௜ଶ + 𝜎௣ଶ቉ 𝑑𝑡 , 𝑖 =
1, … ,𝑛, and 𝑄௜௜,௧ = 𝜎௣ଶ, 𝑖 = 𝑛 + 1, and off-diagonal elements 𝑄௜௝,௧ = 𝜎௣ଶ𝑑𝑡, ∀𝑖 ≠ 𝑗. 

Then, we have 

 E ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ = 𝐯𝐭′𝛍𝐭 (A3) 

 Var ൤𝑑𝑝௧𝑝௧ ฬ ℱ௧𝛏൨ = 𝐯𝐭′𝐐𝐭𝐯𝐭. (A4) 
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Next, we write down the Lagrange function 

 𝐹௧(𝐯𝐭, 𝜆௧) = 𝐯𝐭′𝛍𝐭ඥ𝐯𝐭′𝐐𝐭𝐯𝐭 + 𝜆௧(1 − 𝐯𝐭′𝟏). (A5) 

We later will argue that the condition 0 ≤ 𝑣௜,௧ ≤ 1,  ∀𝑡, 𝑖 = 1, … ,𝑛 + 1  is automatically 

satisfied in our model, so it does not affect our optimization process and is not incorporated in 

Equation (A5). First-order conditions generate 

 ∇𝐯𝐭𝐹௧(𝐯𝐭∗, 𝜆௧∗) = (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ − 𝜆௧∗𝟏= 𝟎 

(A6) 

 ∇ఒ೟𝐹௧(𝐯𝐭∗, 𝜆௧∗) = 1 − 𝐯𝐭∗′𝟏 = 𝟎. (A7) 

Multiplying both sides of Equation (A6) by 𝐯𝐭∗′ on the left, we have 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝐯𝐭∗′𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐯𝐭∗′𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ = 𝜆௧∗ = 0. (A8) 

Then, 

 (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ଵଶ𝛍𝐭 − (𝐯𝐭∗′𝐐𝐭𝐯𝐭∗)ିଵଶ𝐐𝐭𝐯𝐭∗𝐯𝐭∗′𝛍𝐭 = 𝟎. (A9) 

The second-order condition is satisfied and omitted here for brevity. Then, 𝐯𝐭∗ is a maximizer. 

Next we solve 𝐯𝐭∗  explicitly. Define 𝜇௩∗𝑑𝑡 ≜ 𝐯𝐭∗′𝛍𝐭  and 𝜎௩ଶ∗𝑑𝑡 ≜ 𝐯𝐭∗′𝐐𝐭𝐯𝐭∗ , which are the 

portfolio mean return and variance of return at the optimal weight allocations in 𝑑𝑡 , 
respectively. Rearranging Equation (A9), we have 

 𝐐𝐭𝐯𝐭∗ = 𝛍𝐭 𝜎௩ଶ∗𝜇௩∗ . (A10) 

Then, the 𝑖th element of 𝐐𝐭𝐯𝐭∗ is ቈ𝑣௜,௧∗ ൬௤೔,೟ೌ௤೔,೟൰ଶ 𝐵௜ଶ + 𝜎௣ଶ቉ 𝑑𝑡, 𝑖 = 1, … , 𝑛. The last element of 

𝐐𝐭𝐯𝐭∗  is 𝜎௣ଶ𝑑𝑡 . Also, the 𝑖 th element of 𝛍𝐭 ఙೡమ∗ఓೡ∗   is ఙೡమ∗ఓೡ∗ ൬௤೔,೟ೌ௤೔,೟ 𝐴௜𝑚௜,௧ − ௖೔௤೔,೟ೌమ௤೔,೟ − 𝑓௜ + 𝜇௣൰ 𝑑𝑡 , 𝑖 =1, … ,𝑛. The last element of 𝛍𝐭 ఙೡమ∗ఓೡ∗  is ఙೡమ∗ఓ೛ఓೡ∗ 𝑑𝑡. We have the following relation: 

 𝑣௜,௧∗ ൬𝑞௜,௧௔𝑞௜,௧൰ଶ 𝐵௜ଶ + 𝜎௣ଶ𝜎௣ଶ = 𝜎௩ଶ∗𝜇௩∗ ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ + 𝜇௣ቇ𝜎௩ଶ∗𝜇௣𝜇௩∗  (A11) 
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for 𝑖 = 1, … ,𝑛. Rearranging the expression above, we have 

 𝑣௜,௧∗ = ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ቇ 𝜎௣ଶ
ቆ𝑞௜,௧௔𝑞௜,௧ቇଶ 𝐵௜ଶ𝜇௣  (A12) 

for 𝑖 = 1, … ,𝑛. 

Then, funds’ sizes can be expressed as, for 𝑖 = 1, … ,𝑛: 
 𝑞௜,௧ = 𝑉𝑣௜,௧∗ = 𝑉 ቆ𝑞௜,௧௔𝑞௜,௧ 𝐴௜𝑚௜,௧ − 𝑐௜𝑞௜,௧௔ ଶ𝑞௜,௧ − 𝑓௜ቇ 𝜎௣ଶ

ቆ𝑞௜,௧௔𝑞௜,௧ቇଶ 𝐵௜ଶ𝜇௣ . (A13) 

Substitute the expression above into Equation (41), and rearrange to get 

 𝑓௜𝑞௜,௧ = −𝑞௜,௧௔ ଶ𝐵௜ଶ𝜇௣𝑉𝜎௣ଶ − 𝑐௜𝑞௜,௧௔ ଶ + 𝑞௜,௧௔ 𝐴௜𝑚௜,௧. (A14) 

Manager 𝑖 ’s problem is to maximize 𝑓௜𝑞௜,௧  by choosing 𝑞௜,௧௔  . Applying the first-order 

condition on the right-hand side of Equation (A14), we have 

 𝑞௜,௧௔∗ = 𝐴௜𝑚௜,௧𝑉𝜎௣ଶ2൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A15) 

The second-order condition is −ଶ஻೔మఓ೛௏ఙ೛మ − 2𝑐௜ < 0 , showing that 𝑞௜,௧௔∗  is a maximizer. Then 

substituting 𝑞௜,௧௔∗ back to Equation (A13), we have 

 𝑞௜,௧∗ = ൫𝐴௜𝑚௜,௧൯ଶ𝑉𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A16) 

We can see that 

 𝑞௜,௧௔∗𝑞௜,௧∗ = 2𝑓௜𝐴௜𝑚௜,௧. (A17) 

We assume that manager 𝑖 sets 𝑓௜ sufficiently low such that the condition 0 ≤ 𝑞௜,௧௔∗ ≤ 𝑞௜,௧∗  is 

automatically satisfied and we do not incorporate this constraint in the optimization problem 

in Equation (41). Also, by Equations (A13) and (A16), we have, for 𝑖 = 1, … ,𝑛, 

 𝑣௜,௧∗ = 𝑞௜,௧∗𝑉 = ൫𝐴௜𝑚௜,௧൯ଶ𝜎௣ଶ4𝑓௜൫𝐵௜ଶ𝜇௣ + 𝑐௜𝑉𝜎௣ଶ൯. (A18) 
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As 𝑚௜,௧ ≥ 𝑚௜,௧ ≥ 0  and all other parameters on the right-hand side of Equation (A18) are 

positive, 𝑣௜,௧∗ , 𝑖 = 1, … ,𝑛 is nonnegative, i.e., investors do not short sell active funds. That is, 

as long as funds provide positive expected net alphas, investors do not short sell them. Also, 

summing up Equation (A18) for 𝑖 = 1, … ,𝑛, we have 

 ෍𝑣௜,௧∗௡
௜ୀଵ = ෍ ൫𝐴௜𝑚௜,௧൯ଶ4𝑓௜ ቆ𝐵௜ଶ𝜇௣𝜎௣ଶ + 𝑐௜𝑉ቇ

௡
௜ୀଵ . (A19) 

With a sufficiently large 𝜇௣ or a sufficiently small 𝜎௣ଶ, we have ∑ 𝑣௜,௧∗௡௜ୀଵ ≤ 1. As 𝑣௜,௧∗ , 𝑖 =1, … ,𝑛 is nonnegative and ∑ 𝑣௜,௧∗௡௜ୀଵ ≤ 1, we have 𝑣௜,௧∗ ≤ 1, for 𝑖 = 1, … ,𝑛. With all these 

conditions, we also have 0 ≤ 𝑣௡ାଵ,௧∗ ≤ 1; i.e., investors invest part of their wealth into the 

passive benchmark. The intuition is that as long as the passive benchmark portfolio provides 

sufficiently high expected return or sufficiently low risk, investors do not short sell it. These 

results are realistic because in reality, we observe investors invest part of their wealth in active 

funds and another in passive benchmark portfolios. Then, the condition 0 ≤ 𝑣௜,௧ ≤ 1,  ∀, 𝑖 =1, … ,𝑛 + 1 is automatically satisfied and we do not incorporate this constraint in solving the 

investors’ optimization problems. 

Q.E.D. 

Proof of Results in Section 4 

Summing up both sides of Equation (A16) over 𝑖 to get AFMI equilibrium size 𝐼𝑆௧∗, 
with 𝐵௜ = 𝐵, 𝑐௜ = 𝑐(𝐻), 𝑓௜ = 𝑓, for 𝑖 = 1, … , 𝑛 we have 

 𝐼𝑆௧∗ ≜෍𝑞௜,௧∗௡
௜ୀଵ = 𝑉𝜎௣ଶ4𝑓൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯෍൫𝐴௜𝑚௜,௧൯ଶ௡

௜ୀଵ . (A20) 

By Equation (5), the 𝑖th element of 𝐈ି𝟏(𝛏𝐭)𝐝𝛏𝐭 is 

 𝑑𝜉௜,௧𝜉௜,௧ = 𝐴௜𝑚௜,௧𝑑𝑡 + 𝐵௜𝑑𝑊ഥ௜,௧. (A21) 

Substituting Equations (A15), (A16), and (A21) into Equation (11), with 𝐵௜ = 𝐵, 𝑐௜ = 𝑐(𝐻), 𝑓௜ = 𝑓, for 𝑖 = 1, … ,𝑛, to get the equilibrium fund net alpha, we have 

 𝑑𝑆௜,௧𝑆௜,௧ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ 𝑑𝑡 + 2𝑓𝐵𝐴௜𝑚௜,௧ 𝑑𝑊ഥ௜,௧ . (A22) 

Then, the equilibrium expected fund net alpha conditional on the current information is 
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 E ቈ𝑑𝑆௜,௧𝑆௜,௧ ቤ ℱ௧𝛏቉ = 𝑓𝐵ଶ𝜇௣𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ 𝑑𝑡. (A23) 

By differentiating Equations (A20) and (A23) with respect to 𝐻, we have 

 𝜕𝐼𝑆௧∗𝜕𝐻 = −𝑉ଶ𝜎௣ସ𝑐′(𝐻)4𝑓൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ଶ෍൫𝐴௜𝑚௜,௧൯ଶ௡
௜ୀଵ  (A24) 

 𝜕E ൤𝑑𝑆௜,௧𝑆௜,௧ ฬ ℱ௧𝛏൨𝜕𝐻 = −𝑓𝐵ଶ𝜇௣𝑉𝜎௣ଶ𝑐′(𝐻)൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ଶ 𝑑𝑡, 
(A25) 

where 𝑐ᇱ(𝐻) ≜ ௗ௖(ு)ௗு  . Thus, given that all other parameters are positive, both డூௌ೟∗డு   and 

డ୉൤೏ೄ೔,೟ೄ೔,೟ ฬℱ೟𝛏൨డு  are positive (negative) if and only if 𝑐ᇱ(𝐻) < 0 (𝑐ᇱ(𝐻) > 0). In other words, both 𝐼𝑆௧∗ and E ൤ௗௌ೔,೟ௌ೔,೟ ฬ ℱ௧𝛏൨ increase (decrease) with 𝐻 if and only if 𝑐ᇱ(𝐻) < 0 (𝑐ᇱ(𝐻) > 0). 

We differentiate Equations (A24) and (A25) with respect to 𝐻, and we have 

 𝜕ଶ𝐼𝑆௧∗𝜕𝐻ଶ = 16𝑓ଶ𝑉ଶ𝜎௣ସ × −𝑐′′(𝐻)൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ + 2𝑉𝜎௣ଶ(𝑐′(𝐻))ଶൣ4𝑓൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯൧ଷ ෍൫𝐴௜𝑚௜,௧൯ଶ௡
௜ୀଵ  

(A26) 

 𝜕ଶE ൤𝑑𝑆௜,௧𝑆௜,௧ ฬ ℱ௧𝛏൨𝜕𝐻ଶ = 𝑓𝐵ଶ𝜇௣𝑉𝜎௣ଶ × −𝑐′′(𝐻)൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ + 2𝑉𝜎௣ଶ(𝑐′(𝐻))ଶ൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ଷ 𝑑𝑡. 
(A27) 

Thus, given that all other parameters are positive, both డమூௌ೟∗డுమ   and 
డమ୉൤೏ೄ೔,೟ೄ೔,೟ ฬℱ೟𝛏൨డுమ   are positive 

(negative) if and only if −𝑐′′(𝐻)൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ + 2𝑉𝜎௣ଶ(𝑐′(𝐻))ଶ > 0 

(−𝑐′′(𝐻)൫𝐵ଶ𝜇௣ + 𝑐(𝐻)𝑉𝜎௣ଶ൯ + 2𝑉𝜎௣ଶ(𝑐′(𝐻))ଶ < 0). Consequently, 𝐼𝑆௧∗ is convex (concave) 

in 𝐻 if and only if E ൤ௗௌ೔,೟ௌ೔,೟ ฬ ℱ௧𝛏൨ is convex (concave) in 𝐻. 

Q.E.D. 
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Figure 1. AFMI Equilibrium HHI and Relative Inferred Abilities 

Figure 1 illustrates the results of an AFMI with two funds, fund 1 and fund 2. The vertical axis is the equilibrium 
AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼௧∗, and the horizontal axis is manager 1’s inferred ability, 𝑚ଵ,௧. Manager 
2’s inferred ability 𝑚ଶ,௧ is set to be one, so that 𝑚ଵ,௧ can be regarded as manager 1’s inferred ability relative to 
manager 2’s. In Case One, the two managers have the same size factor, 𝑋ଵ = 𝑋ଶ = 100, and the same sensitivity 
of gross alpha to ability, 𝐴ଵ = 𝐴ଶ = 1 . In Case Two, 𝑋ଵ = 2𝑋ଶ = 200  and 𝐴ଵ = 𝐴ଶ = 1 , whereas in Case 
Three, 𝑋ଵ = 𝑋ଶ = 100 and 𝐴ଵ = 2𝐴ଶ = 2. The solid curve, dashed curve, and dotted dashed curve illustrate the 
results of Case One, Case Two, and Case Three, respectively. 
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Figure 2. AFMI Equilibrium HHI and Inferred Abilities with Dynamic Abilities and 
Constant Abilities 

Figure 2 illustrates the results of an AFMI with two funds, fund 1 and fund 2, with dynamic abilities in the two 
upper subplots and with constant abilities in the two lower subplots, respectively. For each case, on the left-hand 
side, we illustrate the simulated inferred abilities, 𝑚ଵ,௧ and 𝑚ଶ,௧, in blue lines and red stars, respectively. On the 
right-hand side, we illustrate the equilibrium AFMI Herfindahl-Hirschman Index, 𝐻𝐻𝐼௧∗. We plot these simulation 
results from Month 0 to Month 400. 
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Figure 3 U.S. AFMI Concentration Dynamics 

Figure 3 plots the monthly values of variables from January 1990 to December 2020 using the U.S. active equity 
mutual fund data from the Center for Research in Security Prices (CRSP). The two graphs on the top plot the 
HHIs calculated at fund level and fund family level, respectively. The two graphs in the middle plot the 5FIs 
calculated at fund level and fund family level, respectively. The two graphs at the bottom plot the number of funds 
and the number of fund families in the market, respectively. The HHI is the Herfindahl-Hirschman Index, 
calculated as the sum of market shares squared. Funds’ (fund families’) market shares are calculated based on 
their net assets under management. The 5FI is the sum of the largest five market shares. The number of funds (the 
number of fund families) is counted as the number of the U.S. active equity mutual funds (mutual fund families) 
that have observations of net assets under management. The gray areas represent the two recessions, from March 
2001 to November 2001, and from December 2007 to June 2009, respectively. 
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Table 1 Summary Statistics 

Table 1 reports the summary statistics of our monthly observations from January 1990 to December 2020. Fund 
Net Asset is the fund’s net assets under management measured in million dollars. Fund Family Net Asset is the 
sum of funds’ net assets under management in the fund family, measured in million dollars. Fund Family Size is 
the number of funds in the fund family, and it is a number. Industry Size is the sum of all funds’ net assets under 
management, measured in million dollars. HHI at Fund Level (HHI at Fund Family Level) is the Herfindahl-
Hirschman Index, calculated as the sum of market shares squared of funds (fund families), and it is in decimal. 
Funds’ (fund families’) market shares are calculated based on their net assets under management. 5FI at Fund 
Level (5FI at Fund Family Level) is the sum of the market shares of the largest five funds (fund families), and it 
is in decimal. The number of funds (the number of fund families) is counted as the number of the U.S. active 
equity mutual funds (mutual fund families) that have observations of net assets under management. 

Variable Observation Mean Standard
Deviation

1st 25th 50th 75th 99th

Fund Net Asset (in 1 Million Dollar) 1079671 752.29 4169.00 0.10 6.90 50.70 301.10 11567.51
Fund Family Net Asset (in 1 Million Dollar) 1079671 22512.52 72388.38 0.40 211.80 2742.70 16429.76 448008.20
Fund Family Size (Number of Funds) 1079671 24.48 26.87 1 5 16 35 114
Industry Size (in 1 Million Dollar) 372 2183399 1220398.0 27564.8 1297342.0 2284910.0 3128818.0 4322742.0
HHI at Fund Level (Decimal) 372 0.0118 0.0140 0.0068 0.0082 0.0090 0.0103 0.1053
5FI at Fund Level (Decimal) 372 0.1698 0.0715 0.1245 0.1475 0.1562 0.1668 0.6346
Number of Funds in the Industry (Number) 372 2902.3410 1501.5510 53 1422 3110 4305 4977
HHI at Fund Family Level (Decimal) 372 0.0635 0.0632 0.0481 0.0502 0.0523 0.0576 0.4886
5FI at Fund Family Level (Decimal) 372 0.4310 0.0714 0.3886 0.4023 0.4208 0.4334 0.8900
Number of Fund Families in the Industry (Number) 372 643.0188 237.3335 34 452 676 838 967

Percentile

 


